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We construct some unusual spaces by considering maximal members of suitable families of
topologies. For example, we construct a countable regular crowded space no point of which is a
limit point of two disjoint sets. An application to w* is that there is a separable space which is
a continuous image of »* under a <two-to-one map. We also show that for each k € [2, w), there
is a k-ieresolvable space.
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Our main goal is to prove that the space w*, which is a compact space which is
very far from being separable, can be mapped onto a separable space by a function
each of whose fibers has at most two elements. We do this in Section 4 by showing
that if there is a countable, crowded, perfectly disconnected, regular space, then
the Cech-Stone compactification of this space is the image of w* under the required
type of map. The problem is therefore to find a countable. crowded, perfectly
disconnected, regular space. This is what we do in the first three sections. In the
last section, using some of the earlier results of the paper we show that for each
integer k there is a k-irresolvable countable regular space.

1. Auxiliary results
Definition 1.1. Call a space X maximal if 7X is maximal in the collection of all

crowded topologies on X. If J is a separation axiom call X maximal 7 if 7X is
maximal in the poset of all crowded topologies with .7 on the underlying set of X.
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These concepts are due to Hewitt, [4]).

Theorem 1.2. (a) There exists a {countable) maximal regular space.
{b) There exists a Hausdorff maximal space.
{¢) Maximal Hausdorff spaces are maximal.
(d) A space is maximal iff it is maximal T,.

Proof. (d) only if: If X is a maximal space, then
F ={U\F: U e rX and F is a finite subset of X}

is a crowded T,-topology on X with 5 27X hence 7 X =7

(¢) and (d) if: For ic{l,2}, if ¥ and J are topologies with ¥ J and if ¥ is
T.then T is T,

(2) and (b): There is a crowded regular topology J on w. For i€ {2, 3} let P, be
the poset, under inclusion, of all crowded T,-topologies & on w with ¥ 2 J. To see
P, has a maximal member note that if C is a chain in P, then C is a collection
closed under finite intersection every member of which is infinite, hence \/C, the
topology LC is a base for, is crowded. Clearly, VC is 7> since VC=2.7. To see that
V € is regular if /= 3. consider any %eC, any Ce %. and any xeC. There are U, I be-
longing to %. hence to V C. such that xeUs V’*cC. Therefore V CeP,. Hence P, has
a maximal member by Zorn’s lemma. O

Definition 1.3. A space X is perfectly disconnected if no point of X is a limit point
of disjoint subsets of X, or equivalently if pe A\{p} implies that pe (41U {p})".

We will see later that the crowded perfectly disconnected spaces are precisely the
maximal spaces. Therefore, in order to find a regular perfectly disconnected crowded
space, we need to find a regular maximal space. (Note that a regular maximal space
is not the same thing as a maximal regular space.) Unfortunately, it is not true that
if ¥ and J are topologies with < J and if ¥ is T, then J is T;. Indeed, in
Example 1.9, we will see that there is a space that is maximal regular but not
maximal. It will take some effort to overcome this and construct a maximal regular
space anyway.

A useful property of the spaces introduced is given by:

Definition and fact 1.4. A space X is called ultradisconnected if it is crowded and if
(a) every two disjoint crowded subsets of X have disjoint closures; or,
equivalently, if

(b) a nonempty proper subset A of X is clopen iff both A and A€ are crowded.

Proof. The implication (a) = (b) is clear.
{b) = (a): Let A and B be disjoint crowded subsets of X. First notice that both
AU B and AU B° are crowded. Hence, AU B is clopen.
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Define
A*=A\B and B*=B\A".

Then clearly
A*nB*=9 and AcA*<A and
BcB*cB and A*UB*=AUB.

Clearly this implies A*“= B* UA U B, and also that A* and B* are crowded. As
/3 U B°, being open, is also ciowded, it follows that A* is clopen, and therefore,
AnB=¢since Ac A* and BN A*=¢. []

Fact 1.5. Let X be ultradisconnected. Then
(a} Every closed crowded subspace of X is open.
(b) X is extremelly disconnected.
(c) Every crowded subspace of X is ultradisconnected.

Proof. (a): By definition uitradisconnected spaces are crowded, so closed subsets
have crowded complements.

(b): Clear from (a).

(c): Trivial. O

Fact 1.6. Ifie{1,2,3} then maximal T-spaces are ultra.lisconnected.

Proof. Let A< X be such that both A and A€ are crowded. Then tke topological
sum A+ A° of A and A° is crowded and T;, and clearly 7(A+ A°) = 7X. Hence
T7(A+ A°) = 7X, and therefore A is clopen in X since it is clopen in A+ A°. []

Corollary 1.7. Maximal regular spaces are extremally disconnected and hence zern-
dimensional.

Theorem 1.8. A space is maximal regular iff it is regular and ultradisconnected.

Proof. Necessity follows from Fact 1.6.

Sufficiency: Let ¥ 2 X be a regular crowded topology. Consider any S€ &. To
prove S € 7X consider any x € S. Since (X, &) is regular there is U e & with xe U
and cl,U < 8. As & is crowded, both cl, U and X\cl, U are crowded in (X, &),
hence in X since ¥ 27X. Hence cl, U e 7X since X is ultradisconnected. This
shows that x is in the interior with respect to 7X of S. O

Example 1.9. There is a space which is maximal regular but not maximal.

Proof. Let M be a maximal regular space, which exists by Theorem 1.2(a). Choose
a fixed element q of M. Let p be a free ultrafilter on w. We will define a topology
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T on the set X =(wxM)u{p}. For new and U open in M, the set {n}x U is
open. If pe Ac X, then A is a neighborhood of pif {new: An({n}xM)is a
neighborhood of (n, g)} € p. It is easy to check that this defines a regular topology
on X. The topology J is not maximal because a strictly stronger crowded topology
arises by declaring the set @ x{q} to be closed. We still must show that (X, J) is
maximal regular, or equivalently by Theorem 1.8 that it is ultradisconnected. Suppose
A is a subset of X such that A and X\A are crowded. By Definition and fact 1.4,
we are done if we can show that A is clopen. Assume without loss of generality
that p € A. Then applying Definition and fact 1.4 to each set {n} x M gives that X\ A
is open. Similarly, A is a neighborhood of each of its elements other than p. So we
need to check that A is a neighborhood of p. But if not, then the set {necw:
An ({n}x M) is not a neighborhood of (n, q)}€ p, so {new: (X\A)n({n}x M) is
a neighborhood of (n, q)} € p (again by Definition and fact 1.4). But then p is isolated
in A since {p}uU(X\A) is a neighborhood of p, contradicting the fact that A is
crowded. [

Definition 1.10. A space is irresolvable if it is crowded and no dense subset has
dense complement. A space is hereditarily irresolvable if it is crowded and every
crowded subset is irresolvable. A space is open-hereditarily irresolvable if it is crowded
and every open subset is irresolvable.

Here **hereditarily irresolvable” is due to Hewitt, [4], who essentially pointed out
the following:

Fact 1.11. Ultradisconnected spaces are hereditarily irresolvable.

Note that every hereditarily irresolvable space is open-hereditarily irresolvable;
the converse is false:

Example 1.12. There is an open-hereditarily irresolvable space that is not hereditarily
resolvable.

Proof. By Theorems 1.2(a), 1.8, and Fact 1.11 there is an irresolvable space, S say.
Let A be a space with a dense set I of isolated points, such that A\I is resolvable,
e.g. the Alexandroff double of Q, the rationals, or the subspace Q x {0} U {{(k/n, 1/ n):
ke€Z and neN} of @ and let X be the space obtained from A by replacing every
point in I by a copy of S. Formally, X =(A\I)u (I X S) and a subset U of X is
open if and only if (Vx e (A\I)n U)(2 open V< A)[xe Vand Vn(A\I)< U and
(VAaI)xSc Ul,and Un(IxS)isopenin I x§ (with the product topology). O

We introduce open-hereditarily irresolvable because we have a characterization.

Fact 1.13. For a crewded space X the following are equivalent:
(a) X is open-hereditarily irresolvable; and
(b) (VA< X) [4°=0=4 is nowhere dense].
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(Note that in (b) trivially < holds.)

Proof. (a) = (b): Consider any A< X with 4°=0 and any nonempty open U in
X. As 4°=0, U\Ais dense in U. As U is irresolvable, it follows that A is not dense
in U.

(b) = (a): Let Y be any nonempty open subspace of X, and consider any dense
subset 4 of Y. Then 1 is not nowhere dense, hence A°#0. As A< Y it follows that Y\ .4
is not dense in Y. Hence, Y is irresolvable. [

Let us consider a class of spaces in which nowhere dense subsets are very small:

Definition and fact 1.14. We call a space X a nodec space if it satisfies one of the
following equivalent properties:

(a) every nowhere dense subset is closed;

(b) every nowhere dense subset is closed discrete;

(c) every subset containing a dense open subset is open.

Proof. (a) = (b): A set is closed discrete iff each of its subsets is closed.
All other implications are trivial. []

Fact 1.15. An ultradisconnected space is nodec iff every relatively discrete subset is
closed.

Proof. Necessity is clear. To prove sufficiency, let A be any nowhere dense subset.
We claim A has no crowded subspaces. Indeed, if B< A then B¢ is dense in X,
hence is crowded, so B is not crowded. This proves that the set I of isolated points
of A is dense in A. But I is closed by hypothesis. Therefore A is closed discrete.

(This proof actually shows that it suffices to know that no relatively discrete subset
has only one cluster point. However, I do not know how to exploit this.) [J

2. A characterization of perfectly disconnected crowdea spaces

In the following, X¢ denotes the derived set of X, i.e., the set of nonisolated
points of X.

Theorem 2.1. For a crowded space X the following are equivalent:
(a) X is perfectly disconnected
(b) (Vxe XH[{A< X: xeA\ [x}} is an ultrafilter];
(c) (VA< X)(Vxe A)[xe A\[x] = xe€4°].

Proof. (a) = (b): Fix any x€ X4, and let
$={Ac X:x¢g A\{x}}.
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We must show that # is a prime ideal. Clearly X ¢ J since x is not isolated and
clearly # is closed under finite unions. Also, # is prime, i.e., (VAc X)[Ae I or
X\Ac #] because X is perfectly disconnected.

(b) => (a): Trivial.

(a) = (¢): Consider any Ac X and xe An X If xe A4° then xe A\{x} since
xe X9 If xe A\{x] then xe (X\AN\{x] since X is perfectly disconnected; hence
x & X\A since xc A, 50 xeA°

(¢) = (a): Suppose A< X and x € A\{x}. Then x € (AU {xP)\{x} so applying (c)
to Au{x} gives xe(Auix})>. O

We now come to the main result of this section, a characterization of perfect
disconnectedness among crowded spaces. In Section 3 we will recognize that a
certain crowded space we construct is perfectly disconnected because it satisfies (d).

Theorem 2.2. For a crowded space X the following are equivalent:
(a) X is perfectly disconnected
(b) a subset of X is open iff it is crowded;
(¢) X is maximal,
(d) X is ultraconnected and nodec;
(e) X is extremally disconnected, open-hereditarily irresolvable, and nodec.

Proof. (a) = (b): Let A< X. If A is crowded then it is open because of (a) = (c¢)
of Theorem 2.1. And if A is open then it is crowded since X is crowded.

(b) = (¢): Trivial.

(¢) = (d): X is ultradisconnected because of Fact 1.6 and Theorem 1.2(d). To
prove X is nodec consider any dense set D. Clearly

S={Uu(VAD): U VerX}

is a topology on X with ¥ 2 7X. We prove that (X, ¥) is crowded: Consider any
x € X. Since X is crowded, if U € 7X then U # {x}. Next consider any V € 7X. Then
V\{x} is nonempty, since X is crowded, and V\{x} is open since X is T,, by
Theorem 1.2(d). Hence (V\{x})~ D #¢ since D is dense in X. This proves that
VD #{x}.

(d) = (e): Ultradisconnected spaces are extremally disconnected and open-
hereditarily irresolvable by Facts 1.5 and 1.11.

(e) = (a): We will prove that X satisfies condition (¢) of Theorem 2.1. So consider
any A< X and any x € A such that x € A\{x].

We first show that xe.4°. Since clearly (A\.1°)°=0 and since X is open-hereditarily
irresolvable, it follows from Fact 1.13 that A\ 4° is nowhere dense, hence it is closed
discrete since .X is nodec. Therefore, x¢ (A\A°)\ {x] which implies xe.4°\ [},

As X is extremally disconnected, .1° is open. Also, A°\ 4°, the boundary of -°. is no-
where dense, hence is closed discrete. Therefore, (.4°\4°)\ {x] is closed. As A° is cpen
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it follows that
AU =A% ((A°\4°)\ ()

is open. Since xe.d, this imphlies xe.1°. O

3. Better subspaces

Here we investigate ways to get better subspaces inside the type of spaces we are
looking at.

Fact 3.1. Every irresolvable space has a hereditarily irresolvable (nonempty) open
subspace.

Proof. Let X be irresolvable, and let .# be a maximal pairwise disjoint coliection of
crowded resolvable subspaces. A moment’s reflection shows that U. / is resolvable, hence
that cllU. # is resolvable. Hence Y= X\ clU.# is a nonempty open subspace of X. If S
is any nonempty crowded subspace of Y then ./u {S} is a pairwise disjoint collection
of subsets of X which has.# as a proper subcollection, hence, by maximality of .7, S
is not resolvable. [J

We now come to the main idea of the construction of perfectly disconnected spaces.

Lemma 3.2. If X is a countable regular open-hereditarily irresolvable space, then
Ax ={xe X:(AD < X)[ D is relatively discrete and x € D\D}}

is nowhere dense.

Proof. Because of Fact 1.13 we prove Ay is nowhere dense if we prove 4% =#0. Since

(Vxe A%) (3D < 45%)[ D is relatively discrete and x € (cl ,, D)\ D]

it suffices to show that Ay # X; forif Ay # X for any choice of X, then in particular,
Ay # U when U is a nonempty clopen (in X) subset of Ay. (Notice that X being
countable and regular, is zero-dimensional.) Let Ay be denoted A, and we show
A#X.

So suppose that A= X. Let s:w - X be a surjection. We claim that there is a
pairwise disjoint sequence (D, : n € w) of relatively discrete subsets of X such that

(1) (Vk<new)[D,< D,] and

(2) (Vnew)[s,e D,].
However, that is impossible, for then clearly both U, ., D, and U, o D2 are
dense in X.
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We construct the D, as follows: D,={s,}. Next, let ncw and suppose Dj is
known for k = n. Let Y = X\(D,\D,). Since D, is countable and since X is regular,
there is a pairwise disjoint indexed open collection (U, : xe D,) such that

(3) (Vxe D)[xe U, c Y]} .
since D, is relatively discrete, so that D,\D, is closed, we see from (1) that we
may assume

(4) (Vxe DU, AU . D =0).

For each x ¢ D, we have x¢ U, ¢ Y ¢ A, hence we can choose a relatively discrete
D, with xecl DAD, and D, < U,. Let T=\{D,:xeD,}, and if s,.,€ T let
D,.,=T; otherwise, let D,,, = Tu{s,..}.

Itis easy to verify that this D, ., is as required: Obviously D, < D,,,, so (Vk=<n)
[D, < D,.,]because of (1). Also clearly D, ,,n Ui o Di € Dysyn\U{U,: xe D,}=
@ because of (4), and D, ,, n D, =@ because for each xe D, wehave D.n D, < D, n
U D,=D ~n{x}=0. Since D,.,=T except when s, ., 2 T, and since (Vk<n)
[D, < T), this shows (Vk < n){ D, A D,,, =9]. Finally T is relatively discrete since
(U,: xe D,) is a pairwise disjoint indexed open collection and since for each xe€ X
the set D, is relatively discrete with D,<c U,. As D,,, =T except when s,.,£ T,
this shows that D, ., is relatively discrete. [J

Example 3.3. There is a countable, perfectly disconnected, regular, crowded space.

Proof. We will find a countable, regular, crowded space which satisfies condition
(d) of Theorem 2.2. By Theorem 1.2(a) there is a countable maximal regular space
X, which, by Corollary 1.8 and Fact 1.11, is ultradisconnected and satisfies the
hypotheses of Lemma 3.2. Let 8 ={x € X: there is no nowhere dense subset A of
X such that x € A\ A}. Then @ is clearly nodec.

We wish to show that @ is nonempty and has no isolated points, for then, by Fact
1.5, it will be ultradisconnected. To this end, we first show that 8 = {x € X: there is
no discrete subset D of X such that x € D\ D}. First notice that since X has no
isolated points, every discrete subset of X is nowhere dense. Next let A be any
nowhere dense subset of X and let D={xe A: x is isolated in A}. Clearly, D is
discrete. We claim that D is dense in A, that is, that A< D. For assume not. Then
E = A\D is a nonempty subset of X which has no isolated points. But X\ E has
no isolated points since X\ E is dense in X. However, since X is ultradisconnected,
this implies that E is open which contradicts the fact that E is a subset of the
nowhere dense set A.

It now follows from Lemma 3.2 that the complement of 8 is nowhere dense in
X. Hence, 0 is dense in X, so it has no isolated points. [

4. On <two-to-one images of w*

Since ™ is big and since two-to-one maps cannot make a big space small, it is
natural to ask whether w* admits a continuous two-to-one map onto a separable
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space. In this section, we obtain a partial answer to this question Ronnie Levy has
asked us. For neN, we call a function f: X > Y

- exactly n-to-one if | {y}|=n for all ve Y.

- <n-to-one if |[f~{y}|<n for all ye Y.

In what follows, all images are under maps, i.e., under continuous functions;
expressions like <two-to-one image are self-explanatory.

We do not know if w* has a separable exactly two-to-one image. (This is genuinely
harder, since [, the closed interval obviously has a <two-to-one image, e.g. itself,
but does not have an exactly two-to-one image, [3]; see also [5].) However, <two-to-
one images are possible.

Theorem 4.1. @* has a separable < two-to-one image.

When proving this theorem we will also find a sufficient condition for the existence
of <two-to-one images with density x of U(«k), the space

U(k)={peBr:(YLe[x] “)Npe L]}

of uniform ultrafilters on «:

Theorem 4.2. A sufficient condition for the existence of <two-to-one images with
density « of U(k) is that there be a k-crowded perfectly disconnected space of
cardinality «.

We praove this later. It has a minor advantage of being even more general, and
of allowing us to study images of U, (k), the space

Uy (k)={pepx: (VLe[k] “pe L]}

of A-uniform ultrafiiters on x. Once Theorem 4.2 is proved, Theorem 4.1 is immediate
because of Example 3.3.

Because of our ignorance about U, («) our only hope to construct a <two-to-one
map from U, (k) onto a space B of density k is to construct a <two-to-one map ¢
from Bk onto B such that ¢ | U, (k) maps U,(x) onto B. Since Y = ¢ "« is a dense
subset of B we think of B as a compactification bY of Y. We will find a necessary
and sufficient condition on a space Y such that

(1) Y has a compactification bY such that there is a <two-to-one map ¢ from
Bk onto bY such that ¢ |« is a bijection k - Y and such that ¢~ U,(«x)=>bY.

We first argue that we may assume without loss of generality that bY =Y in
(1). Indeed, there are maps ¢: Bw - BY and ¢:BY - bY such that ¢ extends oY
and such that ¢ extends id,. Then to=¢ since (toy)|Y =¢]|Y. Hence ¢ is
<two-to-one since ¢ is <two-to-one. Since all bijecticns « - Y are equivalent, it
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fo'tows (kat (1) is equivalent to
(2) If & isamap Bx - BY suchthat & |« is abijection « -» Y, then & is <two-to-one
and ¢ " U,(x)=BY.
We next argue that (2) is equivalent to
(3) If & is any map Bk - BY such that ¢ |« is a bijection « - Y, then
=) (Vye YN 'pe U, («))o(p)=y], and
(=) (Vye V)3 'pex*)o(p)=y]
(Note that in the special case A = w (=) and (=) collapse to

(Vye Y)Y 3pe«<*Nd(p)=v]) (*)

That (2) = (3) is clear. To prove (3) = {2) first note that (=) implies & " U, (x) = bY.
Next note that if X =¢~ Y and f=¢| X then f is a closed <two-to-one map from
X onto Y. As BX = Bk, since k € X € Bk, so that ¢ = gf, it now follows from the
following observation that ¢ is <two-to-one.

Lemma 4.3. Le: neN, let f be a closed map from X onto Y, and assume Y is normal.
Then f is <n-to-one iff Bf is <n-to-one.

Proof. Sufficiercy is clear. To prove necessity consider any set F of n+1 points of
BX. There is a pairwise disjoint indexed collection (A, : x € X) of closed sets in X
such that

(a) (Vxe F)[xcclgy A.], hence such that (Vx e F)[Bf(x)eclsy fAL]

Indeed, let (U, : x € F) be an indexed collection of open sets in 8X such that
(VreF)[xeclgx U] and (Vx#ye F)[clgy U nclyy U, =9],

and for xe F let A, =X nclgx U,.

Since |F|=n-+1 and since f is <n-to-one, (.. rf~ A, =¢. Since the f~A, are
closed, because f is closed, and since BY is normal it follows that

(b) Mier Cl;wf“Ax =0.
It foliows from (a) and (b) that there are x # y € F such that 8f(x)# Bf(y). O

We now find separate characterizations for the (=)-part and for the (<)-part of

(3). The (=)-part is simple. The (<)-part leads to another characterization of
perfectly disconnected spaces.

Theorem 4.4. If ¢ is any map Bk - BY such that ¢ |« is a bijection k > 'Y, then for
everyye 'Y

min{A € [w,k]: ye ¢~ U,(k)} =min{|L|: Lc Y\{y}andye L}.
(We do not define min ¢; if one minimum is not defined, then neither is the other.)

Theorem 4.5. If ¢ is any map Bx > BY such that ¢ |« is a bijection k > Y, then
(VyeY)3 'pex®)d(p)=y] iff Y is perfectly disconnected.
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Proof of Theorems 4.4 and 4.5. We first observe that the fact that ¢ is a continuous
closed function Bx = 8Y implies that:

(Vie YWWKckl{Knod {vIz0e@ ved K. (e)
Since ¢ |« is a bijection x » Y and since K n«* = K\[&} n «* for all £€ «. it follows
that
(Vre YWVK S k)[R na*nd {r} =0 ve(d KN . (+)
Proof of Theorem 4.4: This follows easily from (++) once one observes that
min{A €[w, k]: U(k)nd {p} =0 =min{|L: L xand LA {v} #d}.
Proof of Theorem 4.5: Fix y€ Y and use (+*) to see that for arbitrary ye Y
(Ip#qex®)d(p)=dlq)=y]
& (3P,Qc«k)PnQ=pand Pnk*nd {y}=Pand
Qnk*n¢ {yt=0]
& (A, B Y)AnB=@and ye A\{y} and ye B\{y}]. O

Combining all of this we get:

Theorem 4.6. For a space Y of cardinality k the following are equivalent:

(a) If ¢ is a map Bk - BY such that ¢ |« is a bijection k - Y, then ¢ is <two-to-one
and ¢ U(x)=BY; and

(b) Y is a x-crowded perfectly disconnected space.

Proof of Theorem 4.2. If Y is a x-crowded space of cardinality «, then there is a
<two-to-one map from U(k) onto BY by Theorem 4.6. Clearly d(B8Y)<|Y|=«.
Furthermore, d(Y)=« since Y is a k-crowded perfectly disconnected space of
cardinality k. However, this does not rule out the possibility that d(8Y) <k, cf. [1].
We ensure d(BY)=« by our choice of Y: If there is a x-crowded perfectly
disconnected space of cardinality «, then there is such a space that has a celiular
family of cardinality «: Let Y be a topological sum. Then BY also has a celluiar
family of cardinality k, so d(BY)=«k. [

For our further study of =two-to-one images of U(x) we make the following
observation:

Lemma 4.7. Let Y be a perfectly disconnected crowded space and let ¢ be a map
& : B > BY such that ¢ |« is a bijection k > Y. If Z=x*N¢" Y, then ¢|cl,, Zisa
liomeomorphism cl,, Z - BY.
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Proof. Since " 1s ctowded, ¢ "Z = Y by Theorem 4.4. Also, since Y s perfectly
disconnected, ¢ |Z is one-to-one by Theorem 4.5. Moreover, since & is closed, so
isd|d Y. But Z is closed ‘n ¢ Y since «* is closed in Bwx. This shows ¢! Z is «
homeomorphism Z = Y. As 8Y is the biggest compactification of Y it follows tha
&|Z is a homeomorphism Z -+ g8Y. [

We are now ready to characterize the “multiple” points of BY.

Theorem 4.8. Let Y be a perfectly disconnected crowded space and let & be a map
¢ : Bk - BY such that ¢ |« is a bijection x > Y. The following are equivalent for y € Y*:
(a) o {yH=2; and
(b) there is a discrete C* embedded {closed) subspace B of the space Y such that
ye cl BY B.

Proof. As in Lemma 4.7, let Z=«x*n¢" Y, so ¢|Z is a homeomorphism Z - BY.
Hence we may assume without loss of generality 8Y < «*. Then ¢ is a retraction,
and (a) is equivalent to

(A (Bpex®™p#yand d(p)=v].

(A) = (b): Let pe k* be suchthat p # v and é(p) = v.Since ¢ |BY = idgy,peBY.
Hence thereis Ac k withpe Aand AnBY =0. As ¢ ‘BY =BY and ¢ is <two-to-
one, it follows that ¢|A is one-to-one, hence it is a homeomorphism. It foliows
that B=¢ "A is relatively discrete in Y. (Hence B is in fact closed discrete in Y
since Y is perfectly disconnected.) Moreover, B is C*-embedded since A = BA.

(b) = (A): Let A be a subset of x such that B=¢ ~A is a discrete C*-embedded
subset of the space Y with ye B. Since B =8B, ¢|A is a homeomorphism A - B.
Let p=&(y). It remains to show p # y. To this end we prove:

If K< «, then no homeomorphism K - «* has a fixed point. (*)

This is a routine consequence of the special case K =« of (*), which is a theorem
of Frolik, [2, Theorem B]. So consider any K < «, any embedding e: K - k* and
any p < K. We must prove e(p) # p. Without loss of gencrality assume that pe ™,
that pe S for Sc K with |S|<|K|, and .hat e(p)e K. Since K is open and e(p)e
e K,if B=K e K then e(p)e B. Since e is an embedding, our assumnption that
p€ S for Sc K with |S|<|K| implies that |B|=|K]|. There is A< e” B with |A|=
|B\e~A|=|K|such that pe A. Then |[K\ A| =|K|=|B\e" A|, hence there is a homeo-
morphism h: K - B such that h|A=e|A. As Bc K, h is an embedding K » K*.
Hence h has no fixed points by Frolik's theorem. But clearly e(p)= h(p) since
h|A =e|A and since pc A. [

Recall that for a space Y one calls a point p of Y* a far point of Y if there is
no closed discrete set D in Y such that p e cl,, D. We state the special case k = w
of Theorem 4.8 separately because we need it below.
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Theorem 4.9. Let Y be a countable perfectly disconnected crowded space and let ¢ be
a map ¢ : Bw - BY such that ¢ |w is a bijection w - Y. Then for each v € Y*, we have:

6~ {yH=2 iff y isa far point of Y.

We now turn to the question of when wi has a separable <two-to-one image.
(Again, exactly two-to-one images seem hopelessly out of reach.) This is another
question of Ronnie Levy, who also pointed out the following:

Fact 4.10. If o} or U(w,) admits a <itwo-to-one map onto a separable space B, then
2% =2%,

Proof. Let X denote wf or U(w,), and let f be a <two-to-one map from X onto
a separable space B. Let C be a countable subset of X such that f~C is dense in
B. Then £~ C = B, hence f|(X\ ) is one-to-one. But U(w,) embeds in X\ C. Hence
f induces an embedding of U(w,) into B. Tkerefore, 2*'=w(U(w,)) s w(B) <
2P =2* 0O

In the other direction, we can only prove:

Fact 4.11. If 2“1=2“, then

(a) there is a <three-to-one map from w{ onto a separable space,

(b) if there is a countable crowded perfectly disconnected space that has a far point,
then there is a <two-to-one map from w¥ onto a separable space.

Proof. Let Y be a crowded perfectly disconnected space, and let ¢ be a map
Bw - BY such that ¢ |w is a bijection w > Y. We already know that ¢ is <two-to-one
and that ¢ "™ =BY.

Since oF is homeomornhic to w*+w¥, we prove (a) if we find an embedding
w¥-> BY and we prove (b) if we find an embedding of w{ into the far points of Y.

As is well known, ¥ embeds into Be if (and only if) 2“1 =2“ Therefore we
prove (a) by observing thai Bw embeds into Y. And we prove (b) if we prove that
Bw embeds into the rar points of Y. If every crowded (perfectly disconnected) space
has far points then this is true. If we know only that there is a countable crowded
space that has a far point (but perhaps only one far point) we must choose Y
carefully:

If S is a countable crowded perfectly disconnected space that has a far point,
thenY =S xw is a countable crowded perfectly disconnected space that has a
countable relatively discrete set A of far points with the property that clzy, A< Y*.
By the proof of [6, 3.1], every point of clzy A is far. Also, since Y U A is normal,
being countable, and since A is closed in YU A, clgy A=BA=Lw. []

Note that this trick does not help us to find a finite-to-one map from U(w,) onto
a separable space.
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5. On n-irresolvable spaces

Definition 5.1. If nc w, a space X is n-irresolvable if n=max{|A|: A is a pairwise
disjoint collection of dense subsets of X}.

Notice that with this definition, irresolvability is equivalent to 1-irresolvability.
Thus, we know how to construct 1-irresolvable regular spaces. We now wish to find
n-irresolvable spaces for each n=2.

Theorem 5.2. For every ne€[2, w) there is a (necessarily crowded) n-irresolvable
countable regular space.

Proof. Clearly, if k<n and there is an n-irresolvable countable regular space X,
then there is a k-irresolvable countable regular space Y: Fix n pairwise disjoint
dense subsets of X and let Y be the union of k of them. Hence it suffices to find
a 2"-irresolvable space for each ne[1, w).

Let # be an infinite maximal independent family of subsets of w such that for
each p, q in w with p#q the set {I€ $: |{p, q}n I|=1} is infinite. Let 7 be the
topology on w which has .fu{w\I: Ie.¥} as a subbase. Then X={w, 1) is a regular
irresolvable space: It is Hausdorff because each pair of points can be separated by a
subbasic open set by our choice of .4, it is regular because each subbasic open set is also
closed, and it is irresolvable because of the maximality of #. Therefore, by Fact 3.1
and the observation that X is zero-dimensional there is a clopen subspace U of X
such that U is hereditarily irresolvable. Let &/ and @ be disjoint finite subsets of
# such that (A\\UB < U. Then $' = (F\(A U B))| U is an independent family of
subsets such that 7'=¢'U{U\I: I€$'} generates a hereditarily irresolvable
topology on U which is still regular because &/ and 94 are finite.

Now fix a positive natural number n, and let < #' be such that |%|=n. Let ¥
be the topology on U that has (§'\F)U{U\I: I € $'\%} as a subbase. Clearly

2 ={N\U(F\9): §< F}

is a pairwise disjoint collection of dense subsets of (U, ¥). Let % be a pairwise
disjoint collection of =2" + 1 subsets of U. We show not all members of % are dense:

For each nonempty clopen V < U, not all members of % are dense in (V, 7’| V)
because (U, 7') is hereditarily irresolvable, so there is a nonempty clopen Wc U
that misses at least one member of . Continuing this process we find a nonempty
clopen set W that misses all but at most one member of %,

So if De @ we can find a nonempty clopen D'< D that misses all but at most
one member of J; we may assume that D’ is basic open, and as D has the form
MG\ F\9) for some G< F, D’ will have the form D n ((f)\B) for disjoint
finite of, B $'\F. For a Ce P\{D} we can repeat this argument with the set
Cn(NA\UB) to find disjoint finite o', B'c 9 (FusfuB) such that (Cn
MA\UIB) A (Nt NUB = C~ (M ') U AU 4) ) misses all but at most
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one member of . Since 9 is finite, we end up finding disjoint finite &, M < £\ F
such that

(VD e 2)[ D A\ misses all but at most one member of (]

Since Z covers U it follows that [ .#’\ U. # misses all but at most |7 | member of .#,
As | 7| < | #] this shows there is Ke #'with ((N.¢\ U.#) n K=§. Of course, NL\ U. #
is a nonempty open subset of < U, .¥». O
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