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plicaoions sf maximal topoIo y and its Applications 5 l(1993) 

uaF spaces by considering maximal members of suitable families of 
, we construct a countable regular crowded space no point of which is a 

‘oint sets. An application to o* is that there is a separable space which is 
under a s two-to-one map. We also show that for each k E [ 2, w ), there 

~~~w~f~~: Perfectly disconnected space, 6 two-to-one map. 

AM5 (MOS) Subj. Class.: 54CO5,54G15. 

Our main goal is to prove that the space o*, which is a compact space which is 

very far from being separable, can be mapped onto a separable space by a function 
each of whose fibers has at most two elements. We do this in Section 4 by showing 
that if there is a countable, crowded, perfectly disconnected, regular space, then 

the tech-stone compactification of this space is the image of w* under the required 
type of map. The problem is therefore to find a countable. crowded, perfectly 
disconnected, regular space. This is what we do in the first three sections. In the 
last section, using some of the earlier results of the paper we show that for each 
integer k there is a k-irresolvable countable regular space. 

1. Auxiliary results 

efinition .l. Call a space X maximal if TX is maximal in the collection of all 

crowded topologies on X. If Y is a separation axiom call ,X 

maximal in the poset of all crowded topologies with .17- on the u 
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s .T and if 9’ is 

E (2,3} let P, be 
on o with 92 9. To see 
then UC is a collection 

ite, hence VC, the 
Clearly, VC is 11, since VC 1 .T. To see that 

There are C! I’ be- 

at SE VE I t’c C. Therefore V Q=G,. Hence P, has 

try discortnecfed if no point of X is a limit point 
alently if p E A\(p) implies that PE (A u (p) )“. 

crowded perfectly disconnected spaces are precisely the 
in order to find a regular perfectly disconnected crowded 
uPar maximal space. (Note that a regular maximal space 
aximal regular space.) Unfortunately, it is not true that 

c .T and if 9 is T., then 9 is T3. Indeed, in 
we will set that there is a space that is maximal regular but not 

to overcome this and construct a maximal regular 

s introduced is given by: 

ct 1.4. A space X is called ultradisconnected if it is crowded and if 

(a) every two disjoint crowded subsets of X have disjoint closures; or, 
~~~iv~~e~t~y, if 

Qb) a nonernpty proper subset A of X is clopen iff both A and A’ are crowded. 

ion (a) * (b) is clear. 
B be disjoint crowded subsets of X. First notice that both 

re crowded. Mence, Au I3 is clopen. 
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Define 

AX= A\B and B”=B\A”. 

Their clearly 

A”nB”= 0 and AcA#gA and 
_- 

BEB*GB and A#uB”=ALJB. 

Clearly this implies A*‘= 
-- 

B# u Au B, and also that A# and B* are crowded. As 
A u B’, being open, is also crowded, it follows that A* is clopen, and therefore, 
AnI?=@since AGA# and BnA#=0. U 

Fact 1.5. Let X be ultradisconnected. Then 
(a)* Every closed crowded subspace of X is open. 
(b) X is extremelly disconnected. 
(c) Every crowded subspace of X is ultradisconnected. 

Proof. {a): By definition uBtradisconnected spaces are crowded, so closed subsets 
have crowded complements. 

(b): Clear from (a). 
(c): Trivial. Cl 

Fact 1.6. If i E (1,2,3) then maximal T-spaces are ultra&connected. 

Proof. Let A E X be such that both A and A’ are crowded. Then the topological 
sum A+ A’ of A and A’ is crowded and ‘T;:, and cleafiy c(A f A’) 1 rX. Hence 
T(A + A’) = TX, and therefore A is clopen in X since it is ctopen in A + AC. U 

Corollary 1.7. Maximal regular spaces are extremally disconnected and hence zero- 
dimensional. 

Theorem 1.8. A space is maximal regular iff it is regular and ultradisconnected. 

Proof. Necessity follows from Fact 1.6. 
Sujkiency: Let 9 2 7X be a regular crowded topology. Consider any SE 9. To 

prove S E TX consider any x E S. Since (X, 9’) is regular there is U E 9’ with x E U 
and cl,JY c_ S. As 9 is crowded, both cl,, U and X\cl., W are crowded in (X, Y), 
hence in X since Y 2 TX. Hence cl, U E TX since X is ultradisconnected. This 
shows that x is in the interior with respect to TX of S. Cl 

Example 1.9. There is a space which is maximal regular but not maximal. 

Proof. Let M be a maximal regular space, which exists by Theorem 1.2(a). Choose 
a fixed element q of M. Let p be a free ultrafilter on or). We will define a topology 

,d 
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3 on the set X=(~xM)u{p}. For n~o and U open in M, the set {n)x U is 
open. If pw&X, then A is a neighborhood of p if {n~o: An((n)xM) is a 
neighborhod of (n, q)} E p. It is easy to check that this defines a regular topology 
on X. The topology 9 is not maximal because a strictly stronger crowded topology 
arises by declaring the set o x {q) to be closed. We still must show that (X, 3) is 
maximal regular, or equivalently by Theorem 1.8 that it is ultradisconnected. Suppose 
A is a subset of X such that A and X\A are crowded. By Definition and fact 1.4, 
we are done if we can show that A is clopen. Assume without loss of generality 
that p E A. Then applying Definition and fact 1.4 to each set {n} x M gives that X\A 
is open. Similarly, A is a neighborhood of each of its elements other than p. So we 
need to check that A is a neighborhood of p. But if not, then the set {n E o: 
An({n}xM)isno:aneighborhoodof(n,q)}Ep,so{nEw: (X\A)n({n}xM)is 
a neighborhood of (n, q)} E p (again by Definition and fact 1.4). But then p is isolated 
in A since {p} u (X\A) is a neighborhood of p, contradicting the fact that A is 
crowded. 0 

Definition 1.10. A space is irresolvable if it is crowded and no dense subset has 
dense complement. A space is hereditarily irresolvable if it is crowded and every 
crowded subset is irresolvable. A space is open-hereditarily irresolvable if it is crowded 
and every open subset is irresolvable. 

Here “hereditarily irresolvable” is due to Hewitt, [4], who essentially pointed out 
the following: 

Fact 1.11. Ultradisconnected spaces are hereditarily irresolvable. 

Note that every hereditarily irresolvable space is open-hereditarily irresolvable; 
the converse is false: 

Example 1.12. There is an open-hereditarily irresolvable space that is not hereditarily 
resolvable. 

Proof. By Theorems 1.2(a), 1.8, and Fact 1 .l 1 there is an irresolvable space, S say. 
Let A be a space with a dense set I of isolated points, such that A\ I is resolvable, 
e.g. the Alexandroff double of Q, the rationals, or the subspace CP x {0] u {(k/ n, I/ n): 

k E Z and n E N} of Q*, and let X be the space obtained from A by replacing every 
point in I by a copy of S. Formally, X = (A\I) u (I x S) and a subset U of X is 
openifandonlyif(VxE(A\l)n U)(3open VcA)[xe Vand Vn(A\l)c_ Uand 
( V n I) x SE U], and U n (I x S) is open in I x S (with the product topology). q 

We introduce open-hereditarily irresolvable because we have a characterization. 

3. For a crowded space X the following are equivalent: 
(a) X is open-hereditarily irresolvable; and 
(bj (VA E X) [,4°=0~.4 is nmhw d~nsc]. 



(Note that in (b) trivially C- holds.) 

Proof. (a) * (b): Consider any A c X with .d”=O and any nonempty open U in 
X. As .3”=8, U\A is dense in U. As U is irresolvable, it follows that A is not dense 
in V. 

(b) + (a): Let Y be any nonempty open subspace of X, and consider any dense 
subset A of Y. Then .-1 is not nowhere dense, hence .d O # 8. .4s il c Y it follows that Y \,&I 
is not dense in Y. Hence. Y is irresolvable. 0 

Let us consider a class of spaces 

Definition and fact 1.14. We call a 
following equivalent properties: 

(a) every nowhere dense subset 
(b) every nowhere dense subset 

in which nowhere dense subsets are very small: 

space X a nodec space if it satisfies one of the 

is closed; 
is closed discrete; 

(c) every subset containing a dense open subset is open. 

Proof. (a) 3 (b): A set is closed discrete iff each of its subsets is closed. 
All other implications are trivial. Cl 

Fact 1.15. An ultradisconnected space is nodec iff every relatively discrete subset is 

closed. 

Proof. Necessity is clear. To prove su@iency, let A be any nowhere dense subset. 
We claim A has no crowded subspaces. Indeed, if B c A then B’ is dense in X, 
hence is crowded, so B is not crowded. This proves that the set I of isolated points 
of A is dense in A. But I is closed by hypothesis. Therefore A is closed discrete. 

(This proof actually shows that it suffices to know that no relatively discrete subset 
has only one cluster point. However, I do not know how to exploit this.) Cl 

2. A characterizatiofi of perfectly disconnected crowded spaces 

In the following, Xd denotes the derived set of X, i.e., the set of nonisolated 
points of X. 

Theorem 2.1. For a crowded space X the following are equivalent: 

(a) X is perfectly disconnected; 

(b) (VXE Xd)[(&X . x64 \ {s) ). is an ultrafilter]; 

(c) (VA~X)(V~EA)[~EA\{~}~~E~“]. 

Proof. (a) =+ (b): Fix any x E Xd, and let 

9 = {As X: xii A\(x)). 



We now come to the main result of this section, a characterization of perfect 
disconnectedness among crowded spaces. In Section 3 we will recognize that a 
certain crowded space we construct is perfectly disconnected because it satisfies (d). 

Theorem 2.2. For a crowded space X the following are equivalent: 

(a) X is perfectlv disconnected ; . 

(b) u subset qf X is open if it is crowded; 

(c) X is maximal; 

(d) X is uhraconnected and nodec; 
(e) X is extremallv disconnected, open-hereditarilr, irresolvable, and nodec. . w 

Proof. (a) a (b): Let AE X. If A is crowded then it is open because of (a) * (c) 
of Theorem 2.1. And if A is open then it is crowded since X is crowded. 

(b) =+ (c): Trivial. 
(c) ---r, (d): X ‘s It d I u ra isconnected because of Fact 1.6 and Theorem 1.2(d). To 

prove X is nodec consider any dense set D. Clearly 

Y’=(Uu(VnD): U, VE~X) 

is a topology on X with 9 2 TX. We prove that (X, 9) is crowded: Consider any 
x E X. Since X is crowded, if U E 7X then U # {x}. Next consider any VE TX. Then 
V\(x) is nonempty, since X is crowded, and V\(x) is open since X is T,, by 
Theorem 1.2(d). Hence ( V\(x)) n D # 63 since D is dense in X. This proves that 
Vn D#{x}. 

(d) 3 (e): Ultradisconnected spaces are extremally disconnected and open- 
hereditarily irresolvable by Facts 1.5 and 1 .l 1. 

(e) * (a): We ‘II WI prove that X satisfies condition (c) of Theorem 2.1. So consider 
any A s X and any x E A such that x E A\(xj. 

We first show that XC?‘. Since clearly (il\.1”)“=0 and since ri is open-hereditarily 

irresolvable, it follows from Fact I. 13 that ,+l \A” is nowhere dense, hence it is closed 
~ - 

discrete since .Y is nodec. Therefore, s& (.-I/,4”) \ .(_u) which implies _YE.~ O\, : .L). 

As X is extremally disconnected, p is open. Also, .+I0 \A O, the boundary of 4”. is no- 

where dense, hence is closed discrete. Therefore, ( A0 \A”) \, (A-) is closed. As x0 is open 



it follows that 
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-- 
.-l”u {.I-; =P‘x\ ( (A” \.-I”) \ ;A-; ) 

is open. Since SC-I. this implies .~.-t~. 0 

3. Better subspaces 

Here we investigate ways to get better subspaces inside the type of spaces we are 

looking at. 

Fact 3.1. Every irresolvable space has a hereditarily irresolvable (nonempty) open 

subspace. 

Proof. Let 3’ be irresolvable, and let . N be a maximal pairwise disjoint collection of 

crowded resolvable subspaces. A moment’s reflection shows that U. N is resolvable, hence 

that clU. I/ is resolvable. Hence Y- - .I’\& I/ is a nonempty open subspace of x. If S 

is any nonempty crowded subspace of Y then .//u (S} is a pairwise disjoint collection 

of subsets of X which has . c/ as a proper subcollection, hence, by maximality of l 17, S 

is not resolvable. Cl 

We now come to the main idea of the construction of perfectly disconnected spaces. 

Lemma 3.2. !f X is a countable regular open-hereditarily irresolvable space, then 

Ax ={XE X: (DDE X)[Disrelativelydiscreteandx~ I)\D]} 

is nowhere dense. 

Proof. Because of Fact 1.13 we prove As is nowhere dense if we prove A $ = 8. Since 

(VXE A”,)(3Dz ,4P,)[D is relatively discrete and XE (clAs D)\D] 

it suffices to show that Ax # X; for if Ax # X for any choice of X, then in particular, 

AU f U when U is a nonempty clopen (in X) subset of As. (Notice that X being 

countable and regular, is zero-dimensional.) Let As be denoted A, and we show 

A # X. 

So suppose that A = X. Let s : o + X be a surjection. We claim that there is a 

pairwise disjoint sequence (D,, : n E W) of relatively discrete subsets of X such that 

(I) (Vk<nEw)[DkEE] and 

(2) (Vu E 4% zi 
However, that is impossible, for then clearly both U,,, (,, Q,, and u,,, (,, D_z~, 4 I at-e 

dense in X. 



ext, let n E w and suppose Q, is 
le and since X is regular, 

tion (U, : x E D$J such t 

is closed, we see from (1) that we 

Oose a relatively discrete 
,: XED,,), and if s,+,E F let 

Obviously D,, c_ D,,+, , so (WC s n) 
]becauseaf(l).Alsoclearly Dm,,nUki,a D&C D,a+,nU(U,:xE D,,}= 

eof(Q),and D,+!nD, = 8 because for each x E D” we have D-x n D,, s 4, n 

t when s,, +I e z and since (Vk s n) 

= 01. Finally T is relatively discrete since 
J is a pairwise disjoint indexed open collection and since for each x E X 
is relatively discrete with D, G Uv. As D,,+, = T except when sn+, @ F, 

this show; that I.&+ a is relatively discrete. III 

le 3.3. There is a countable, perfectly disconnected, regular, crowded space. 

Proof. We wi13 find a countable, regular, crowded space which satisfies condition 
(d) of Theorem 2.2. By Theorem 1.2(a) there is a countable maximal regular space 
X, which, by Corollary 1.8 and Fact I .l 1, is ultradisconnected and satisfies the 
hypotheses of Lemma 3.2. Let it) = {x E X: there is no nowhere dense subset A of 
X such that x E A\A). Then 8 is clearly nodec. 

We wish to show that 8 is nonempty and has no isolated points, for then, by Fact 
1.5, it will be ultradisconnected. To this end, we first show that 8 = {x E X: there is 
no discrete subset D of X such that x E I)\D}. First notice that since X has no 
isolated points, every discrete subset of X is nowhere dense. Next let A be any 
nowhere dense subset of X and let D = {x E A: x is isolated in A}. Clearly, D is 

discrete. We claim that D is dense in A, that is, that A C_ 6. For assume not. Then 
E = A\D is a nonempty subset of X which has no isolated points. But X\E has 
no isolated points since X\E is dense in X. However, since X is ultradisconnected, 
this implies that E is open which contradicts the fact that E is a subset of the 
nowhere dense set A. 

It now follows from Lemma 3.2 that the complement of 8 is nowhere dense in 
X. Hence, 8 is dense in X, so it has no isolated points. 0 

o-to-one images of w* 

Since CM* is big and since two-to-one maps cannot make a big space small, it is 

natural to ask whether W* admits a continuous two-to-one map onto a separable 
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space. In this section, we obtain a partial answer to this question Ronnie Levy has 

asked us. For n EN, we call a function .f: X + Y 

- e_~act/~~ n-to-one if l.r{ ?*>I = II for all 1’ E Y. 

- Sn-to-one if I-J-{ _v}) S n for all YE Y. 

In what follows, all images are under maps, i.e., under continuous functions; 

expressions Ii ke 6 two-to-one image are self-explanatory. 

We do not know if w* has a separable exactly two-to-one image. (This is genuinely 

harder, since 0, the closed interval obviously has a stwo-to-one image, e.g. itself, 

but does not have an exactly two-to-one image, [3]; see also [5].) However, stwo-to- 

one images are possible. 

Theorem 4.1. w* has a separable < two-to-one image. 

When proving this theorem we will also find a sufficient condition for the existence 

of Stwo-to-one images with density K of U(K), the space 

of Uniform UhrafikrS On K: 

Theorem 4.2. A s@icient condition for the existerace of s two-to-one images with 

density K of U(K) is that there be a K-crowded perfectly disconnected space of 

cardinality K, 

We prove this later. It has a minor advantage of being even more general, and 

of allowing us to study images of U*(K), the space 

U,JK)={~EPK: (bhS[K]‘ ‘)[p@c]} 

of A-uniform ultrafitters on K. Once Theorem 4.2 is proved, Theorem 4.1 is immediate 

l because of Example 3.3. 

Because of our ignorance about UA (K) our only hope to construct a s two-to-one 

map from Uh (K ) onto a space B of density K is to construct a Stwo-to-one map C$ 

from PK onto B such that 4 1 uA (K ) maps UA (K) onto B. Since Y = 4+~ is a dense 

subset of B we think of B as a compactification bY of Y. We will find a necessary 

and sufficient condition on a space Y such that 

(1) Y has a compactification bY such that there is a stwo-to-one map 4 from 

PK onto bY such that 4 I K is a bijection K + Y and such that @+ U,(K) = by. 

We first argue that we may assume without loss of generality that bY = p Y in 

(1). Indeed, there are maps $ : /3~ + pY and L : PY + hY such that cc/ extends 4 I Y 

and such that L extends id,,. Then L 0 $ = 4 since (L 0 sl/) I Y = & I Y. Hence J, is 

<two-to-one since 4 is <two-to-one. Since all bijections K -+ Y are equivalent, it 



That (2) (3) is clear. To prove (3) * 123 fir58 
Next note that if X=&T andf=d,iX ttaen 

X onto, Y. As PX = @PC, since K E X c PK, so 
following observation that 4 is stwo-to-one. 

a aced ~~wo-t 
= IV it now follows from the 

Lemma 4.3. Le: la E N, let f be a closed map &km x’ onto Y, and assume Y is normal. 

?%eiit $ is S n-t+one iff j3f is S n-to-one* 

Proof. Suflciemy is clear. To prove necessity consider any set F of n + 1 points of 
PX. There is a pairwise disjoint indexed collection (A, : x E X) of closed sets in X 

such that 

(a) (Vx E F)[.r E cI~,~ A,], hence such that (Vx E F)[pfcx) E clpJA,-1. 

Indeed, let (Us: s E F} be an indexed collection of open sets in /3X such that 

(V.- E F)[x E ~1,~ U,] and (Vx f Y E F)[d~.~ U, n ~1p.v y,- = fll, 

and for XE F let A,=XnclBs U\.. 

Since IFI = n -11 and since f is s n-to-one, n ,, &-. f-A, =fl. Since the f+A, are 

closed, because f is closed, and since p Y is normal it follows that 

(b) f-L.< F cl&+A, 4. 
It follows from (a) and (b) that there are x #y E F such that pS(x) # pf(_y). Cl 

We now find separate characterizations for the (a)-part and for the (<)-part of 

(3). The (+part is simple. The (s )-part leads to another characterization of 

perfectly disconnected spaces. 

Theorem 4.4. k’f 4 is any map PK + p Y such that 4 1 K is a bijection K + Y, then *for 
every y E Y 

(We do not define min 0; if one minimum is not defined, then neither is the other.) 

.S. If C$ is atiy map /3ki =+ /3 Y such that bp 1 K is Q hijection K =+ Y, then 



r-4 (3A,Sc Y)[AnB=flandyEA\(y) and YEB\O% q 

Combining all of this we get: 

Theorem 4.6. For a space Y of cardinality K the following are equivalent: 

(a) If 4 is a map PK + p Y Euch that 4 1 K is a bijection K + Y, then 4 is S two-to-one 
and +‘u(K)=pY; and 

(b) Y is a K-crowded Perfect1 disconnected space. 

Proof of Theorem 4.2. If Y is a K-crowded space of cardinality K, then there is a 

<two-to-one map from u(K) onto p Y by Theorem 4.6. Clearly d (j3 Y) 6 1 Y( = K. 

Furthermore, d( Y) = K since Y is a K-crowded perfectly disconnected space of 

cardinality K. However, this does not rule out the possibility that d(PY) < K, cf. [ 11. 

We ensure d(PY)i > K by our choice of Y: If there is a K-crowded perfectly 

disconnected space of cardinality K, then there is Ou@h a space that has a cellular 

family of cardinality K: Let Y be a topological sum. Then p Y also has a cehuiar 

family of cardinality K, so d (/3 Y) 3 K. g 

For our further study of <two-to-one images of U(K) we make the following 

observation: 

Lemma 4.7. Let Y be a perfect/y disconnected crowded space and let 4 be a map 

4 : PK + pY such that C#J 1 K is a bijection K+ Y. If &=K%C,b- Y, then +Jcl,,, Z is a 

homeomorphism 61+ 2 -3 /3 YC 



roof. As in Lemma 4.7, let Z = K * n &* Y, so 4 1 is a homeomor~~~ism f + 

Hence we may assume without loss of generality z K? Then & is a retract 
and (a) is equivalent to 

(A3 (3p~~*)[~f ‘c’ and &(pl=p]. 
(A)=$(b~:Letp&*besuchthatp#_~and~(~)=_~.Sinced, pY=id@, ,papY. 

Hence there is A cz K with p E .& and &I /3 Y = VI. As 4 -/3 Y = p Y and 4 is <two-to- 

one, it follows that 4t, 1 A’ is one-to-one, hence it is a homeomorphism. It follows 
that B = & ‘A is relatively discrete in Y. (Hence B is in fact closed discrete in Y 
since Y is perfectly disconnected.) oreover, B is C*-embedded since x = PA. 

(b) =j (A): Let A b e a subset of K such that B = 4-A is a discrete C*-embedded 

subset of the space Y with _V E l?. Since B = p/3, C@ is a homeomorphism A+ B. 

Let p = b( ~9. It remains to show p f _r. To this end we prove: 

If k’C K, then no homeomorphism I? + K* has a fixed point. (*ic) 

This is a routine consequence of the special case K = K of (*), which is a theorem 

of Frolik, [2, Theorem B]. So consider any K E K, any embedding e: K + K* and 

any p E l?. We must prove e(p) f p. Without loss e:lae” assume that p E K*, 

that p @ S for S c K with ISI < I Kl, and &hat e(p) E K. Since is open and e(p) E 
e + K, if B = I? (7 e *K then e( II) E 1% Since e is an embedding, our assumption that 

pas for SC K with ISI<IKI s pl urn ies that lel= 1~1. There is AG 4-B with JAI = 
IS\e *Al = 1 K I such that p E A. Then I K \AI -= I K I = ll?\e-Al, hence there is a homeo- 
morphism h : K + s such that hlA = elA. As BE K, h is an embedding i? + K*. 
Hence h has no fixed points by Ftolik’s theorem. But clearly e(p) = h(p) since 
@= e)A and since PE A. 0 

Recall that for a space Y one calls a point p of Y* a -far point of Y if there is 
no closed discrete set D in Y such that p E clP, D. We state the special case K = w 

or’ Theorem 4.8 separately because we need it below. 



w turn to the question of en of has a separable dtwolto-one ima 

ch.) This is another 

(w,) admits a s two-to-one map onto a separable space B, then 
29 = 2*. 

Pr&. Let X denote of or U(o,), and let f be a <two-to-one map from X onto 

a separable space B. Let C be a countable subset of X such that J-C is dense in 

B. ThenJ’5‘= 49, henceSI(X\c) is one-to-one. But U(o,) embeds in X\c. Hence 

f induces an embedding of U(q) into B. Therefore, 2’5 = w( U(q)) s w(B) d 

2 .cl dU3)=2w 

In the other direction, we can only prove: 

Fact 4.11. k” 2”’ = 2”‘, then 
(a) there is a =S three-to-one map from w f onto a separable space, 
(b) if there is a countable crowded perfectly disconnected space that has a far point, 

then there is a s two-to-one map from 07 onto a separable space. 

Praof. Let Y be a crowded perfectly disconnected space, and let 4 be a map 

flu + /3 Y such that 4 1 o is a bijection o + Y. We already know that 4 is s two-to-one 
and that &+o* = PY. 

Since o: is homeomor9hic to o*+ or, we prove (a) if we find an embedding 

UJ~ + BY and we prove (b) if we find an embedding of or into the far points of Y. 

As is well known, OF embeds into @J if (and only if) 2”1=2”. Therefore we 

prove (a) by observing that pw embeds into PY. And we prove (b) if we prove that 

@J embeds into the t-ar points of Y. If every crowded (perfectly disconnected) space 

has fx points then this is true. If we know only that there is a countable crowded 

space that has a far point (but perhaps only one far point) we must choose Y 

carefully: 

If S is a countable crowded perfectly disconnected space that has a far point, 

then Y = S x w is a countable crowded perfectly disconnected space that has a 

countable relatively discrete set A of far points with the property that cloy A c Y*. 

By the proof of [6,3.1], every point of clpy A is far. Also, since Y u A is normal, 

being countable, and since A is closed in Y u A, clBv A = PA =5: pm. Cl 

Note that this trick does not help us to find a finite-to-one map from L&J,) onto 

a separable space. 
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5. On rr-irresolvable spaces 

Definition 5.1. If n E o, a space X is n-irresoloable if n = max{lA I: A is a pairwise 

disjoint collection of dense subsets of X}. 

Notice that with this definition, irresolvability is equivalent to 1-irresolvability. 

Thus, we know how to construct l-irresolvable regular spaces. We now wish to find 

n-irresolvable spaces for each n 2 2. 

Theorem 5.2. For every n E [2, w ) there is a (necessarily crowded) n-irresolvable 
countable regular space. 

Proof. Clearly, if k s n and there is an n-irresolvable countable regular space X, 

then there is a k-irresolvable countable regular space Y: Fix n pairwise disjoint 

dense subsets of X and let Y be the union of k of them. Hence it suffices to find 

a 2”-irresolvable space for each n E [ 1, w). 
Let 9 be an infinite maximal independent family of subsets of o such that for 

each p, q in o with p Z 9 the set {I E JJ: I{ p, 9) A II= 1) is infinite. Let r be the 

topology on o which has .fu (w\l: IE .81, as a subbase. Then A’= (cr), 7) is a regular 

irresolvable space: It is Hausdorff because each pair of points can be separated by a 

subbasic open set by our choice of <I: it is regular because each subbasic open set is also 

closed, and it is irresolvable because of the maximality of S. Therefore, by Fact 3.1 

and the observation that X is zero-dimensional there is a clopen subspace U of X 
such that U is hereditarily irresolvable. Let d and % be disjoint finite subsets of 

9 such that n&\ua E U. Then 9 ‘= ($\(& u 8)) 1 U is an independent family of 
subsets such that T’ - - .P ‘u { U\ I: I E 9; ‘) generates a hereditarily irresolvable 

topology on U which is still regular because .ti and 3 are finite. 

Now fix a positive natural number n, and let 9 G 9 ’ be such that ISI = n. Let 9 

be the topology on U that has (9; ‘\s) u { U\I: I E 9 ‘\9} as a subbase. Clearly 

is a pairwise disjoint collection of dense subsets of (U, 9’). Let 3C be a pairwise 

disjoint collection of 22” + 1 subsets of U. We show not all members of 3% are dense: 

For each nonempty clopen Vc U, not all members of .9[ are dense in (V, 7’1 V> 

because (U, 7’) is hereditarily irresolvable, so there is a nonempty clopen WE U 

that misses at least one member of 5K Continuing this process we find a nonempty 

clopen set W that misses all but at most one member of ?” 

So if DE 9 we can find a nonempty clopen D’E D that misses all but at most 

one member of 3%; we may assume that D’ is basic open, and as D has the form 

n%\U< g\ %) for some %s 9, D’ will have the form D n ((nSa)\(&3) for disjoint 
finite &‘, B c .a’\% For a @E 5~\( D} we can repeat this argument with the set 
c n (f-W\uS93) to find disjoint finite .vlb’, 3’~ .a ‘\( %_.I .d’ w 3) such that (C’ n 
nd\uB) n (nd’)\u93’ = c n (p7t.d u .q \, i,J ( tiu 4’ j b misses all but at most 
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one member of 9. Since 9 is finite, we end up finding disjoint finite 2, & C_ 9 ‘\s 

such that 

(VD E 9)[ D n nZ\I_M misses all but at most one member of g[]. 

Since 9 covers U it follows that SLY\ U. N misses all but at most 19 1 member of ,w; 

As 1 .‘sl c 1 .A this shows there is KEXwith (f-W\ U* fl) CI 8~0. Ofcourse, n5?\ U. II 

is a nonempty open subset of ( U, $0. Cl 
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