Теорема Титце-Урысона о продолжении

Пусть $X-T_4$ -пространство и F- его замкнутое подмножество. Тогда

- а) у любой непрерывной функции $f\colon F\to [-1,1]$ имеется непрерывное продолжение $\hat f\colon X\to [-1,1];$
- б) у любой непрерывной функции $f:F\to\mathbb{R}$ имеется непрерывное продолжение $\hat{f}:X\to\mathbb{R}$.

Доказательство. a) Для любой непрерывной функции $f_0: F \to \mathbb{R}$ со свойством $|f_0(x)| \leqslant a$ для $x \in F$ (где a > 0) существует непрерывная функция $g: X \to \mathbb{R}$ со свойствами

- ② $|f_0(x) g(x)| \leq \frac{2}{3} a$ для $x \in F$.

В самом деле, множества $A=f_0^{-1}([-a,-\frac{a}{3}])$ и $B=f_0^{-1}([\frac{a}{3},a])$ замкнуты в F, и они не пересекаются; поскольку F замкнуто в X, множества A и B замкнуты и в X, и по лемме Урысона существует непрерывная функция $\varphi\colon X\to [0,1]$ такая, что $\varphi|_A\equiv 0$ и $\varphi|_B\equiv 1$. Функция $g\colon X\to \mathbb{R}$, определённая правилом $g(x)=\frac{2}{3}a\cdot (\varphi(x)-\frac{1}{2})$ для $x\in X$, непрерывна и удовлетворяет условиям \bullet и \bullet .

Теперь определим по индукции последовательность непрерывных функций $g_n: X \to \mathbb{R}$, удовлетворяющих таким условиям для всех $n \in \mathbb{N}$:

Функцию g_1 мы определим, применив сделанное выше замечание к a=1 и

3 $|g_n(x)| \leq \frac{1}{3} \cdot \left(\frac{2}{3}\right)^{n-1}$ для всех $x \in X$;

Индуктивное построение завершено.

 $|f(x) - \sum_{i \le n} g_i(x)| \le \left(\frac{2}{3}\right)^n$ для $x \in F$.

функции f_0 , равной надотображению $\tilde{f}: F \to \mathbb{R}$ отображения $f: F \to [-1,1]$. Допустим, что функции g_1, g_2, \ldots, g_k уже построены так, что выполнены условия \mathfrak{g} и \mathfrak{g} с $n \leqslant k$. Применяя то же самое замечание к $a = \left(\frac{2}{3}\right)^k$ и $f_0 = \tilde{f} - \sum_{i \leqslant k} g_i \big|_F$, мы получим функцию g_{k+1} , удовлетворяющую условиям \mathfrak{g} и \mathfrak{g} с n = k+1.

Согласно известному из анализа признаку Вейерштрасса в силу условия \odot ряд функций $\sum_{n\in\mathbb{N}}g_n(x)$ равномерно сходится на \mathbb{R} к некоторой функции $\hat{f}:X\to [-1,1]$, причём по теореме Коши \hat{f} непрерывна. Из условия \odot следует, что $\hat{f}(x)=f(x)$ для всех $x\in F$. Значит, \hat{f} — искомое непрерывное продолжение функции f на X.

6) Рассмотрим теперь функцию $f: F \to \mathbb{R}$. Пусть $\psi: \mathbb{R} \to [-1, 1]$ — функция, определённая правилом $\psi(x)=rac{x}{1+|x|}$. Тогда $\psi\circ f$ — непрерывная функция F o [-1,1], причём $\psi \circ f(F) \subset (-1,1)$, и к ней применимо уже доказанное утверждение a). Пусть $\hat{f}_1: X \to [-1,1]$ — непрерывное продолжение функции $\psi \circ f$. В силу его непрерывности множество $G = f_1^{-1}(\{-1,1\})$ замкнуто в X, и оно не пересекает F. Значит, по лемме Урысона существует непрерывное отображение $\varphi\colon X \to [0,1]$ такое, что $\varphi|_G \equiv 0$ и $\varphi|_F \equiv 1$. Легко видеть, что отображение $\hat{f}_2: X \to [-1,1]$, определённое формулой $\hat{f}_2(x) = \hat{f}_1(x) \cdot \varphi(x)$, тоже является непрерывным продолжением отображения $\psi \circ f$ на X, причём $\hat{f}_2(X) \subset \psi(\mathbb{R}) = (-1,1)$. Функция $\hat{f} = \psi^{-1} \circ \hat{f}_2$ — искомое непрерывное продолжение f на X.

Утверждение а) теоремы Титце–Урысона остаётся верным при замене отрезка [-1,1] на любой другой отрезок [a,b], где $a,b\in\mathbb{R}$, a< b. Действительно, для $f:F\to [a,b]$ достаточно рассмотреть любой гомеоморфизм $\psi\colon [a,b]\to [-1,1]$ (например, $\psi(x)=\frac{a+b-2x}{a-b}$), построить непрерывное продолжение $\widehat{\psi\circ f}\colon X\to [-1,1]$ функции $\psi\circ f\colon F\to [-1,1]$ и положить $\widehat{f}=\psi^{-1}\circ\widehat{\psi\circ f}$.

Тихоновские пространства

Определение

Топологическое пространство X удовлетворяет аксиоме отделимости $T_{3\frac{1}{2}}$, если для любого замкнутого множества $F\subset X$ и любой точки $x\notin F$ существует непрерывная функция $f\colon X\to [0,1]$, принимающая значение 0 в точке x и тождественно равная 1 на множестве F.

Пространства, удовлетворяющие аксиомам T_1 и $T_{3\frac{1}{2}}$, называются вполне регулярными, или тихоновскими.

Иногда за определение принимают равносильное условие: $X \in T_{3\frac{1}{2}}$, если для любой точки $x \in X$ и любой её окрестности U существует непрерывная функция $f: X \to [0,1]$ такая, что f(x) = 0 и $f|_{X \setminus U} \equiv 1$.

 $T_{3\frac{1}{2}}\Longrightarrow T_3$: если $X\in T_{3\frac{1}{2}}$, F замкнуто в X и $x\in X\setminus F$, то множества $U=f^{-1}ig([0,\frac{1}{2})ig)$ и $V=f^{-1}ig([\frac{1}{2},1]ig)$, где $f\colon X\to [0,1]$ — непрерывная функция, равная 0 в точке x и 1 на множестве F, — непересекающиеся окрестности x и F.

нормальность \Longrightarrow тихоновость \Longrightarrow регулярность \Longrightarrow $T_2 \Longrightarrow T_1 \Longrightarrow T_0$.

Ни одну из этих стрелок нельзя обратить.

Примеры

- \bullet $T_0 \implies T_1$
 - Связное двоеточие множество $\{a,b\}$, состоящее из двух точек a и b, с топологией $\{\varnothing,\{a\},\{a,b\}\}$.
- \bullet $T_1 \implies T_2$

Множество \mathbb{R} с топологией Зарисского, в которой открыты все дополнения до конечных множеств и только они.

- \bullet $T_2 \implies T_3$
 - Прямая $\mathbb R$ с топологией, базу которой составляют все открытые интервалы и множества вида $(-\varepsilon,\varepsilon)\setminus S$, где $\varepsilon>0$ и $S=\{1,\frac12,\frac12,\dots\}$.

Множество S замкнуто в новой топологии и $0 \notin S$, однако S и 0 не отделены окрестностями.

• $T_1 + T_3 \implies T_{3\frac{1}{2}}$ Сложный пример.

• $T_1 + T_{3\frac{1}{2}} \implies T_4$

Плоскость Немыцкого L

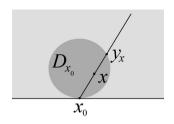
$$L \in \mathcal{T}_1$$
: топология L сильнее топологии, порождённой метрикой.

$$L \in T_{3\frac{1}{2}}$$
: достаточно проверить для точек граничной прямой / плоскости Немыцкого — всякая окрестность любой точки $x_0 \in L \setminus I$ содержит некоторую ε -окрестность относительно евклидовой метрики d на плоскости, а для ε -окрестности нужная функция из определения $T_{3\frac{1}{2}}$ существует (притом

непрерывная не только относительно топологии L_{i} но и относительно более

слабой метрической топологии замкнутой верхней полуплоскости) — можно положить $f(x) = \min\{\frac{d(x_0,x)}{\varepsilon},1\}$. Пусть $x_0 \in I$, U — любая окрестность точки x_0 и $D_{x_0} \cup \{x_0\}$ — базисная окрестность x_0 , содержащаяся в U. Для $x \in D_{x_0}$ обозначим через y_x точку, в которой луч, выходящий из точки x_0 и проходящий через x, пересекает

границу круга D_{x_0} :



Функция $f: L \rightarrow [0,1]$, определённая правилом

$$f(x) = egin{cases} 0, & ext{ если } x = x_0, \ 1, & ext{ если } x \in L \setminus ig(D_{x_0} \cup \{x_0\}ig), \ rac{d(x_0,x)}{d(x_0,y_x)}, & ext{ если } x \in D_{x_0}, \end{cases}$$

непрерывна на L, $f(x_0)=0$ и $f|_L\setminus U\equiv 1$ (так как $U\supset D_{x_0}$).

Мы показали, что плоскость Немыцкого L вполне регулярна. Вместо того чтобы доказывать, что L не нормальна, мы докажем несколько более общий факт.

Предложение

Если сепарабельное пространство содержит замкнутое дискретное подпространство мощности $\geqslant 2^{\aleph_0}$, то оно не удовлетворяет аксиоме T_4 .

Доказательство. Пусть X — сепарабельное пространство, $Y\subset X$ — счётное всюду плотное множество в X и D — замкнутое дискретное подпространство X мощности 2^{\aleph_0} . Знаем: если непрерывные функции $f,g:X\to\mathbb{R}$ принимают одинаковые значения в точках Y, то они совпадают. Значит, на X существует не более чем $|\mathbb{R}|^{|Y|}=(2^{\aleph_0})^{\aleph_0}=2^{\aleph_0}$ разных непрерывных функций.

Поскольку D дискретно, любая функция $D \to \mathbb{R}$ непрерывна, а число разных таких функций равно $|D|^{|\mathbb{R}|} = 2^{2^{\aleph_0}}$. Если бы пространство X удовлетворяло аксиоме T_4 , то каждая из этих функций допускала бы непрерывное продолжение на X, и все продолжения были бы разными (так как уже сами функции разные), а это невозможно, поскольку по теореме Кантора $2^{2^{\aleph_0}} > 2^{\aleph_0}$.

Аксиомы отделимости в подпространствах

Легко видеть, что свойство удовлетворять каждой аксиоме отделимости, кроме T_4 , наследственно. Покажем, например, что если $X \in T_3$ и $Y \subset X$, то $Y \in T_3$. Пусть F — замкнутое подмножество Y и $x \in Y \setminus F$. Положим $G = \overline{F}^X$. Поскольку $F = G \cap Y$, имеем $x \notin G$; значит, в пространстве X существуют непересекающиеся окрестности U и V точки x и множества G соответственно. По определению индуцированной топологии $U \cap Y$ и $V \cap Y$ — окрестности точки x и множества F в пространстве Y, и они не пересекаются.

С аксиомой T_4 дело обстоит иначе, поскольку из того, что замкнутые множества F и G в подпространстве Y пространства X не пересекаются, вообще говоря, не следует, что их замыкания в X не пересекаются. Простой пример — пространство $X = \{a,b,c,d\}$ с топологией $\{\varnothing,\{a\},\{a,b\},\{a,c\},\{a,b,c\},\{a,b,c,d\}\}$ и его подпространство $Y = \{a,b,c\}$: помимо \varnothing и X, в X замкнуты только множества $\{b,c,d\}$, $\{b,d\}$, $\{c,d\}$ и $\{d\}$, и все они попарно пересекаются, так что аксиома T_4 выполняется в X тривиальным образом. Однако в Y есть непересекающиеся замкнутые множества $\{b\}$ и $\{c\}$, и они не отделены окрестностями.

Предложение

Если $X \in T_4$ и Y — замкнутое подпространство X, то $Y \in T_4$.

Доказательство. Если F и G — непересекающиеся замкнутые множества в Y, то они являются таковыми и в X, поскольку Y замкнуто в X. Значит, они имеют непересекающиеся окрестности U и V. Ясно, что $U \cap Y$ и $V \cap Y$ — непересекающиеся окрестности F и G в Y.

Однако открытыми подпространствами нормальность уже не наследуется. Более того, если в некотором пространстве все открытые подпространства нормальны, то в нём нормальны и вообще все подпространства.

Аксиомы отделимости и непрерывные отображения

Ясно, что всеми непрерывными отображениями не сохраняется ни одна аксиома: дискретные пространства удовлетворяют всем аксиомам отделимости, и любое топологическое пространство (X,\mathcal{T}) является образом пространства (X,\mathcal{T}_d) , где \mathcal{T}_d — дискретная топология.

Однако непрерывными отображениями специальных типов некоторые аксиомы отделимости сохраняются (пока мы знаем три таких типа — открытые отображения, замкнутые отображения и гомеоморфизмы). Например, очевидно, что образ f(X) T_1 -пространства X при замкнутом отображении $f: X \to Y$ тоже является T_1 -пространством ($\forall x \in X$ множество $\{x\}$ замкнуто в $X \Longrightarrow \forall y \in f(X)$ множество $\{y\}$ замкнуто в $\{y\}$ замкн

Теорема

 $f^{-1}(G) \subset V$, имеем $F \subset W$ и $G \subset O$.

Если $f: X \to Y$ — замкнутое сюръективное непрерывное отображение нормального пространства X на некоторое пространство Y, то Y нормально.

Доказательство. Мы уже показали, что $Y \in T_1$. Пусть F и G — непересекающиеся замкнутые множества в Y. Тогда $f^{-1}(F)$ и $f^{-1}(G)$ — непересекающиеся замкнутые множества в X. В силу нормальности X существуют непересекающиеся открытые в X множества $U, V \subset X$ такие, что $f^{-1}(F) \subset U, f^{-1}(G) \subset V$ и $U \cap V = \varnothing$. Множества $X \setminus U$ и $X \setminus V$ замкнуты в X, и $X \setminus U \cup X \setminus V = X$. Значит, множества $f(X \setminus U)$ и $f(X \setminus V)$ замкнуты в Y, и $f(X \setminus U) \cup f(X \setminus V) = Y$. Следовательно, множества $W = Y \setminus f(X \setminus U)$ и $O = Y \setminus f(X \setminus V)$ открыты в Y и не пересекаются. Поскольку $f^{-1}(F) \subset U$ и