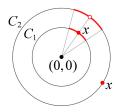
Задачи-8

- **1.** a) Заметьте, что обычная прямая $\mathbb R$ локально компактна. Опишите её одноточечную компактификацию.
- б) Заметьте, что евклидова плоскость \mathbb{R}^2 локально компактна. Опишите её одноточечную компактификацию.
- в) Покажите, что отрезок [0,1] является двухточечной (нарост состоит из двух точек) компактификацией прямой \mathbb{R} (т.е. $[0,1]=c\mathbb{R}$ для некоторого вложения $c:\mathbb{R}\to [0,1]$ такого, что $c(\mathbb{R})$ плотно в [0,1]). Заметьте, что $a\mathbb{R}\leqslant c\mathbb{R}$ (поскольку компактификация $a\mathbb{R}$ наименьшая). Укажите явно соответствующее отображение $c\mathbb{R}\to a\mathbb{R}$ из определения отношения \leqslant между компактификациями.
- г) Существует ли у прямой $\mathbb R$ трёхточечная компактификация?
- **2.** Покажите, что компактификация cX тихоновского пространства X эквивалентна стоун-чеховской компактификации βX тогда и только тогда, когда всякая ограниченная непрерывная функция $f: X \to \mathbb{R}$ продолжается до непрерывной функции $\hat{f}: cX \to \mathbb{R}$.
- **3.** Пусть X тихоновское пространство и Y его замкнутое подпространство. Верно ли, что замыкание множества Y в стоун-чеховской компактификации βX пространства X является стоун-чеховской компактификацией βY пространства Y?
- **4.** Докажите, что для любого бесконечного дискретного пространства D справедливы следующие утверждения:
- а) αD это суперпоследовательность Александрова $A(\kappa)$, где $\kappa = |D|$;
- 6) $|\beta D| = 2^{2^{|D|}}$;
- B) $w(\beta D) = 2^{|D|}$.
- **5.** Покажите, что для некомпактного метризуемого пространства X стоун-чеховская компактификация βX не бывает одноточечной; более того, мощность нароста $\beta X \setminus X$ не меньше 2^{\aleph_0} . Если при этом либо $w(X) = \aleph_0$, либо $w(X) > \aleph_0$ и w(X) нельзя представить как супремум счётного числа меньших кардиналов, то $w(\beta X) = 2^{w(X)}$.
- **6.** а) Покажите, что если X и Y тихоновские пространства с первой аксиомой счётности и компактификации βX и βY гомеоморфны, то и сами пространства X и Y гомеоморфны.
- б) Верно ли, что если компактификации βX и βY произвольных тихоновских пространств X и Y гомеоморфны, то и пространства X и Y гомеоморфны?
- 7. Заметьте, что пространство W_1^0 всех не более чем счётных ординалов с порядковой топологией локально компактно. Докажите, что $\alpha W_1^0 = \beta W_1^0 = W_1$ (напомним, что $W_1 = W_1^0 \cup \{\omega_1\}$). Заметьте, что отсюда вытекает существование ровно одной компактификации у пространства W_1^0 .
- **8.** а) Проверьте, что $\beta[X \oplus Y] = \beta X \oplus \beta Y$ для любых тихоновских пространств X и Y.
- б) Докажите, что если тихоновские пространства X и Y бесконечны и $\beta[X \times Y] = \beta X \times \beta Y$, то все непрерывные функции на X и на Y ограничены.
- 9. Заметьте, что, вообще говоря, компактификация, предоставляемая теоремами Тихонова (т.е. замыкание в $[0,1]^{w(X)}$ образа $\Delta f_{\alpha}(X)$ пространства X при вложении Δf_{α} , где $f_{\alpha}\colon X \to [0,1]$ непрерывные функции, указанные в доказательстве теоремы Тихонова о вложении), не является стоун-чеховской максимальной компактификацией. Докажите, что если $\mathscr{F} = \{f_{\alpha}: \alpha \in A\}$ семейство $\mathit{всеx}$ непрерывных функций $X \to [0,1]$, то замыкание образа пространства X при вложении $\Delta f_{\alpha}\colon X \to [0,1]^A$ совпадает с βX .
- **10.** Пусть αD_1 и αD_2 непересекающиеся одноточечные компактификации дискретных пространств D_1 и D_2 мощности 2^{\aleph_0} . Очевидно, $A = \alpha D_1 \oplus \alpha D_2$ двухточечная компактификация дискретного пространства $D = D_1 \oplus D_2$.

Рассмотрим две окружности $C_i = \{(x,y) \in \mathbb{R}^2 : x^2 + y^2 = i\}$, i = 1, 2. Положим $X = C_1 \cup C_2$. Пусть $p: C_1 \to C_2$ — отображение проектирования окружности C_1 на окружность C_2 из точки (0,0). Мы определим топологию на множестве X с помощью системы окрестностей $\{\mathscr{B}(x): x \in X\}$. Для точки $x \in C_1$ и натурального числа n обозначим через $V_n(x)$ дугу окружности C_1 длины $\frac{1}{n}$ с серединой в точке x и положим $U_n(x) = V_n(x) \cup p(V_n(x) \setminus \{x\})$. Множества вида $U_n(x)$ составляют базу окрестностей точек x из C_1 , а все точки из C_2 изолированы: для $x \in C_1$ полагаем $\mathscr{B}(x) = \{U_n(x): n \in \mathbb{N}\}$, а для $x \in C_2$ — $\mathscr{B}(x) = \{\{x\}\}$.



 $[\]overline{\ \ }^{1)}$ Квадратные скобки здесь означают лишь то, что рассматривается стоун-чеховская компактификация суммы $X \oplus Y$, а не сумма βX и Y. В литературе для этой цели обычно используются круглые скобки, так как всякое пространство считается подпространством своей стоун-чеховской компактификации, так что гомеоморфные вложения β вообще не рассматриваются и нет опасности перепутать компактификацию суммы с её образом при таком вложении.

Топологическое пространство X (с топологией, порождённой этой базой окрестностей) называется двойной окружностью Александрова.

Заметьте, что двойная окружность Александрова тоже является компактификацией пространства D. По-кажите, что компактификации A и X несравнимы. Выведите отсюда, что $\alpha D \neq \beta D$ и $X \neq \beta D$.