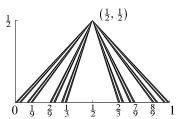
Задачи-10

- **1.** Проверьте, что если последовательность C_1, C_2, \ldots связных подпространств топологического пространства такова, что $C_n \cap C_{n+1} \neq \emptyset$ при $n=1,2,\ldots$, то объединение $\bigcup_{n \in \mathbb{N}} C_n$ связно.
- **2.** а) Докажите теорему Серпинского: никакой континуум нельзя представить как счётное объединение попарно непересекающихся замкнутых множеств, по крайней мере два из которых непусты.
- б) Приведите пример связного подпространства плоскости, которое является счётным объединением непустых попарно непересекающихся замкнутых множеств.
- **3.** Докажите, что любое открыто-замкнутое подмножество тихоновского пространства X является пересечением с X некоторого открыто-замкнутого подмножества компакта βX . Можно ли распространить это утверждение с βX на произвольное тихоновское пространство, содержащее X в качестве плотного подпространства? на произвольную компактификацию пространства X?
- **4.** Пусть E множество всех концевых точек интервалов, удаленных из отрезка [0,1] в стандартном процессе построения канторова множества C. Положим $I = C \setminus E$. Для каждого $c \in C$ соединим точку $(c,0) \in \mathbb{R}^2$ с точкой $(\frac{1}{2},\frac{1}{2}) \in \mathbb{R}^2$ отрезком L_c и обозначим через F_c множество всех точек $(x,y) \in L_c$, у которых координата y рациональна, если $c \in E$, и иррациональна, если $c \in I$. Подпространство $F = \bigcup_{\substack{c \in C \\ c \in C}} F_c$ евклидовой плоскости называется веером Кнастера—Куратовского; оно известно также как протекающая F0 канторова палатка и канторов вигвам.



- а) Докажите, что пространство F связно.
- б) Докажите, что пространство $F^0 = F \setminus \{(\frac{1}{2}, \frac{1}{2})\}$ наследственно несвязно.
- **5.** Топологическое пространство X называется *линейно связным*, если для любых двух точек $x, y \in X$ существует непрерывное отображение $f: [0,1] \to X$, для которого f(0) = x и f(1) = y (такое отображение называется *путём*, соединяющим точки x и y). Топологическое пространство X называется *локально связным*, если в каждой окрестности любой точки $x \in X$ содержится связная окрестность.
- а) Докажите, что любое линейно связное пространство связно.
- б) Приведите пример локально связного несвязного пространства.
- в) Приведите пример связного, но не линейно связного и не локально связного пространства.
- **6.** а) Пусть X связное метризуемое пространство и d любая метрика, порождающая его топологию. Покажите, что для любых $x,y\in X$ и $\varepsilon>0$

существуют такие
$$k \in \mathbb{N}$$
 и $x_1, \dots, x_k \in X$, что $x = x_1, y = x_k$ и $d(x_i, x_{i+1}) < \varepsilon$ для $i < k$. (\star)

- б) Докажите, что каждый метрический компакт (X, d), в котором условие (\star) выполнено для любых $x, y \in X$ и $\varepsilon > 0$, связен.
- в) Приведите пример несвязного метрического пространства (X, d), в котором условие (\star) выполнено для любых $x, y \in X$ и $\varepsilon > 0$.
- **7.** Топологическое пространство называется *нульмерным*, если оно имеет базу, состоящую из открытозамкнутых множеств. Заметьте, что всякое нульмерное пространство несвязно.
- а) Докажите, что пространство $X \subset \mathbb{R}^2$, состоящее из всех точек, у которых одна координата рациональна, а другая иррациональна, нульмерно. Постройте явно его базу, состоящую из открыто-замкнутых множеств.
- б) Покажите, что пространство $Y \subset \mathbb{R}^2$, состоящее из всех точек, у которых либо обе координаты рациональны, либо обе иррациональны, связно.

 $^{^{1)}}$ В противоположность палатке, сделанной из целых отрезков L_c вместо множеств F_c . Бывает и «сильно протекающая канторова палатка» (*Cantor's leakier tent*) — она получается перестановкой слов «рационально» и «иррационально» в определении палатки. Такая палатка уже нульмерна.