Задачи к лекциям 10-12

В задачах к этой лекции A — произвольное индексное множество.

- **1.** Пусть $X_{\alpha}, \alpha \in A,$ топологические пространства.
- а) Покажите, что если $Y \subset \prod_{\alpha \in A} X_\alpha$ плотно в $\prod_{\alpha \in A} X_\alpha$, то проекция $\pi_\alpha(Y)$ множества Y на сомножитель X_α плотна в X_α для каждого $\alpha \in A$.
- б) Приведите пример произведения $X = \prod_{\alpha \in A} X_{\alpha}$ и множества $Y \subset X$ с тем свойством, что проекция $\pi_{\alpha}(Y)$ плотна в X_{α} для каждого $\alpha \in A$, однако Y не плотно в X.
- **2.** а) Приведите пример топологического произведения $X = \prod_{\alpha \in A} X_{\alpha}$ и замкнутого множества $Y \subset X$, для которых проекции $\pi_{\alpha}(Y)$ не замкнуты в X_{α} .
- б) Приведите пример топологического произведения $X = \prod_{\alpha \in A} X_{\alpha}$ и незамкнутого множества $Y \subset X$ с тем свойством, что проекция $\pi_{\alpha}(Y)$ замкнута в X_{α} для каждого $\alpha \in A$.
- **3.** Докажите, что топологическое произведение непустых T_1 -пространств удовлетворяет первой аксиоме счётности (удовлетворяет второй аксиоме счётности, метризуемо) тогда и только тогда, когда все сомножители обладают тем же свойством и все, кроме не более чем счётного числа, одноточечны.
- **4.** Докажите счётную мультипликативность сепарабельности (без использования теоремы Хьюитта–Марчевского–Пондицери).
- **5.** Докажите, что канторово множество $C \subset \mathbb{R}$ гомеоморфно тихоновской степени $\{0,1\}^{\mathbb{N}}$ дискретного пространства $\{0,1\}$.
- **6.** Докажите, что всякое T_0 -пространство X, обладающее счётной базой из открыто-замкнутых множеств, гомеоморфно вкладывается в канторово множество $C \subset \mathbb{R}$ (и, следовательно, метризуемо).
- **7.** Докажите, что любое счётное метризуемое пространство вкладывается в пространство $\mathbb{Q} \subset \mathbb{R}$ рациональных чисел.
- **8.** Докажите, что пространство **P** иррациональных чисел гомеоморфно топологическому произведению \mathbb{N}^{\aleph_0} .
- **9.** Докажите, что топологическое произведение \mathbb{N}^{\aleph_1} не нормально.
- **10.** Докажите, что если X хаусдорфово пространство и \mathcal{Y} семейство его подпространств, то пространство $\bigcap \{Y:Y\in\mathcal{Y}\}\subset X$ с топологией, индуцированной из X, гомеоморфно замкнутому подпространству тихоновского произведения $\prod \{Y:Y\in\mathcal{Y}\}$.
- **11.** Пусть κ любой бесконечный кардинал. Докажите, что счётная степень метрического ежа $J(\kappa)$ колючести κ с тихоновской топологией универсальна для всех метризуемых пространств веса κ , т.е. любое метризуемое пространство веса κ гомеоморфно подпространству пространства $J(\kappa)^{\aleph_0}$.

 $[\]overline{}^{0}$ Канторово множество — подмножество отрезка [0,1], которое строится по индукции так: на первом шаге индуктивного построения имеется один отрезок [0,1], и из него удаляется средняя треть без концов (интервал $(\frac{1}{2},\frac{2}{3})$), так что остаются два отрезка; на каждом следующем шаге из всех имеющихся на этом шаге отрезков удаляются средние трети без концов. Канторово множество получается после счётного числа шагов.