1 Тема 3

1.1 Экстремально несвязные пространство

Задача 1 (5.3). Пусть Y — счётное множество, \mathcal{U} — ультрафильтр на Y и $p \notin Y$. Положим $X = Y \cup \{p\}$ и снабдим множество X топологией, в которой все точки $y \in Y$ изолированы, а окрестности точки p — все элементы ультрафильтра \mathcal{U} . Докажите, что X с этой топологией является счётным недискретным топологическим пространством, в котором все сходящиеся последовательности тривиальны.

Пространство X называется экстремально несвязным, если \overline{U} открыто для любого открытого $U\subset X.$

Задача 2. Докажите, что пространство X из задачи 1 экстремально несвязно.

Задача 3. В экстремально несвязном регулярном пространстве нет нетривиальных (т.е. бесконечных) сходящихся последовательностей.

Задача 4. Пусть X хаусдорфово пространство, $f: X \to X$ непрерывное отображение. Доказать, что множество $F = \{x \in X : f(x) = x\}$ неподвижных точек отображения f замкнуто.

Задача 5. Пусть X хаусдорфово экстремально несвязное пространство, $f: X \to X$ непрерывное отображение и $f \circ f = \mathrm{id}_X$ (т.е. f(f(x)) = x). Доказать, что множество $F = \{x \in X : f(x) = x\}$ неподвижных точек отображения f открыто и замкнуто.

Задача 6. Пусть X хаусдорфово пространство. Если пространство $X \times X$ экстремально несвязно, то X дискретное пространство.

Пусть X множество. Обозначим через $\mathrm{Ult}(X)$ множество ультрафильтров на X. Для $x \in X$, обозначим $\xi_x = \{M \subset X : x \in M\}$ главный ультрафильтр, порожденный точкой x. Точки $x \in X$ множества X отождествим с главными ультрафильтрами ξ_x , будем считать, что X является подмножеством $\mathrm{Ult}(X)$. Множество $X^* = \mathrm{Ult}(X) \setminus X$ называется *наростом* и состоит из свободных ультрафильтров.

Для $M\subset X$ обозначим $W(M)=\{\xi\in \mathrm{Ult}(X):M\in \xi\}$. Семейство $\mathcal{B}_X=\{W(M):M\subset X\}$ является базой топологии. Будем рассматривать $\mathrm{Ult}(X)$ как топологической пространство с топологией, порожденной базой топологии \mathcal{B}_X .

Задача 7. Пространство $\mathrm{Ult}(X)$ экстремально несвязно и, следовательно, в $\mathrm{Ult}(X)$ нет нетривиальных сходящихся последовательностей.

1.2 Непрерывные отображения

Задача 8. Пусть $f: X \to Y$ отображение топологических пространств. Тогда

- 1. отображение f непрерывно тогда и только тогда, когда $f(\overline{A}) \subset \overline{f(A)}$ для любого $A \subset X$;
- 2. отображение f непрерывно тогда и только тогда, когда $\overline{f^{-1}(B)} \subset f^{-1}(\overline{B})$ для любого $B \subset Y$;
- 3. отображение f непрерывно тогда и только тогда, когда $f^{-1}(\operatorname{Int} B) \subset \operatorname{Int} f^{-1}(B)$ для любого $B \subset Y$.

Задача 9 (6.8). Пусть $f: X \to Y$ отображение топологических пространств. Тогда

- 1. отображение f непрерывно и замкнуто тогда и только тогда, когда $f(\overline{A}) = \overline{f(A)}$ для любого $A \subset X$;
- 2. отображение f непрерывно и открыто тогда и только тогда, когда $\overline{f^{-1}(B)} = f^{-1}(\overline{B})$ для любого $B \subset Y$.

Для отображений $f: X \to Y$ и $g: X \to Z$, отображение

$$f \triangle g : X \times Y \times Z, \quad x \mapsto (f(x), g(x))$$

называется диагональным произведением отображений f и g.

Задача 10. Отображения пространств $f: X \to Y$ и $g: X \to Z$ непрерывны тогда и только тогда, когда диагональное произведение $f \triangle g$ непрерывно.

Задача 11. Пусть $f,g:X\to\mathbb{R}$ функции на пространстве X. Доказать, что функции $-f,\ |f|,\ \frac{1}{f}$ (если f не принимает нулевого значения), $f+g,\ f-g,$ $fg,\ \max f,g,\ \min f,g$ непрерывны.

Задача 12. Пусть $f,g:X\to Y$ непрерывные отображения пространств. Доказать, что f=g, если Y хаусдорфово пространство и $f|_M=g|_M$ для некоторого плотного $M\subset X$.

Задача 13. Привести пример $f,g:X\to Y$ непрерывных отображений пространств, таких что $f\neq g, Y$ T_1 -пространство и $f|_M=g|_M$ для некоторого плотного $M\subset X$.

Задача 14. Пусть $f: X \to Y$ отображение пространств, пространство X регулярно, $Y \subset X = \overline{Y}$ и отображение $f|_{Y \cup \{x\}}$ непрерывно для каждого $x \in X$. Доказать, что f непрерывно.

1.3 Секвенциально непрерывные отображения, секвенциальные пространства и пространства Фреше-Урысона

Отображение пространств $f: X \to Y$ называется *секвенциально непрерывным*, если для любой сходящейся последовательности $(x_n)_n \subset X$ к некоторой точке $x \in X$, последовательность $(f(x_n))_n$ сходится к точке f(x).

Задача 15. Доказать, что непрерывное отображение секвенциально непрерывно.

Задача 16. Привести пример секвенциально непрерывного разрывного отображения.

Пространство X называется секвенциальным, если для любого $A\subset X$, $\overline{A}\setminus A\neq\varnothing$ существует последовательность $(x_n)_n\subset A$, сходящаяся к некоторой точке $x\in\overline{A}\setminus A$.

Задача 17. Доказать что пространство X секвенциально если и только если любое секвенциально непрерывное отображение $f: X \to Y$ непрерывно.

Пространство X называется Φ реше-Урысона, если для любого $A\subset X$ и любой точки $x\in\overline{A}\setminus A$ существует последовательность $(x_n)_n\subset A$, сходящаяся к точке x.

Задача 18 (5.6(a)). Заметьте, что каждое пространство с первой аксиомой счётности является пространством Фреше-Урысона.

Задача 19 (5.6(6)). Докажите, что веер Фреше–Урысона является пространством Фреше–Урысона без первой аксиомы счётности.

Задача 20. Докажите, что произведение $X \times [0,1]$ секвенциально для секвенциального пространства X.

Задача 21. Докажите, что произведение $X \times [0,1]$ секвенциально, но не Фреше-Урысона для веера Фреше-Урысона X.