Задачи к лекции 5

- **1.** a) Покажите, что если последовательность сходится к некоторой точке, то и всякая подпоследовательность этой последовательности сходится к той же точке.
- б) Верно ли, что точка топологического пространства является предельной точкой последовательности в этом пространстве тогда и только тогда, когда к ней сходится некоторая подпоследовательность данной последовательности?
- в) Приведите пример последовательности, которая имеет предельную точку, не являющуюся ни пределом этой последовательности, ни предельной точкой множества значений этой последовательности.
- **2.** Пусть X топологическое пространство и $Y \subset X$. Напомним, что Y множество *типа* G_{δ} или G_{δ} -множество в X, если Y является пересечением счётного числа открытых в X множеств. Вместо «одноточечное множество типа G_{δ} » говорят «точка типа G_{δ} ».

Приведите пример топологического пространства, в котором нет нетривиальных сходящихся последовательностей, однако все точки имеют тип G_{δ} .

- **3.** Пусть Y счётное множество, \mathscr{U} ультрафильтр на Y и $p \notin Y$. Положим $X = Y \cup \{p\}$ и снабдим множество X топологией, в которой все точки $y \in Y$ изолированы, а окрестности точки p все элементы ультрафильтра \mathscr{U} . Докажите, что X с этой топологией является счётным недискретным топологическим пространством, в котором все сходящиеся последовательности тривиальны.
- **4.** Покажите, что для топологического пространства X следующие условия равносильны:
- a) X дискретно;
- б) все точки пространства X изолированы;
- в) все подпространства пространства X дискретны;
- Γ) все подпространства пространства X замкнуты.
- **5.** Пусть *к* произвольный бесконечный кардинал.
- а) Приведите пример недискретного топологического пространства, в котором все подпространства мощности, не превосходящей κ , дискретны.
- б) Покажите, что в топологическом пространстве все подпространства мощности, не превосходящей κ , дискретны тогда и только тогда, когда все подпространства мощности, не превосходящей κ , замкнуты.
- **6.** Топологическое пространство X называется *пространством Фреше*—Урысона, если к любой точке прикосновения x любого множества $A \subset X$ сходится некоторая последовательность точек множества A (иными словами, если точка $x \notin A$ предельна для множества A тогда и только тогда, когда к x сходится некоторая последовательность точек множества A).
- а) Заметьте, что каждое пространство с первой аксиомой счётности является пространством Фреше-Урысона.
- б) Приведите пример пространства Фреше-Урысона без первой аксиомы счётности.