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WEIRD R-FACTORIZABLE GROUPS
EVGENII REZNICHENKO AND OL’GA SIPACHEVA

ABSTRACT. The problem of the existence of non-pseudo-R;-com-
pact R-factorizable groups is studied. It is proved that any such
group is submetrizable and has weight larger than w;. Closely re-
lated results concerning the R-factorizability of products of topo-
logical groups and spaces are also obtained (a product X x Y of
topological spaces is said to be R-factorizable if any continuous
function X x Y — R factors through a product of maps from X
and Y to second-countable spaces). In particular, it is proved that
the square G x G of a topological groups G is R-factorizable as
a group if and only if it is R-factorizable as a product of spaces,
in which case G is pseudo-¥;-compact. It is also proved that if
the product of a space X and an uncountable discrete space is
R-factorizable, then X“ is heredirarily separable and heredirarily
Lindelof.

In the middle of the past century Pontryagin proved that any con-
tinuous function on a compact topological group factors through a con-
tinuous homomorphism to a second-countable group (see, e.g., [7, Ex-
ample 37]). This result gave rise to the theory of R-factorizable groups,
which has been fruitfully developed since then.

Definition ([15]). A topological group G is said to be R-factorizable if
any continuous function f: G — R factors through a homomorphism to
a second-countable group, i.e., there exists a second-countable topologi-
cal group H, a continuous homomorphism h: G — H, and a continuous
function g: H — R for which f = go h.

The notion of an R-factorizable group was explicitly introduced by
Tkachenko [15], who also obtained the first fundamental results. Among
other things he proved that the following topological groups are R-
factorizable:

e any Lindelof group;
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e any totally bounded group, that is, a group G such that, given
any open neighborhood U of its identity element, there exists a
finite subset A of G for which AU = G (totally bounded groups
are precisely subgroups of compact groups);

e any subgroup of a Lindelof >-group, in particular, any subgroup
of a o-compact group;

e any dense subgroup of an arbitrary product of Lindelof -
groups.

In the decades since Tkachenko’s paper [15] was published, the theory
of R-factorizable groups has been extensively developed; it is surveyed
in Chapter 8 of the book [1].

However, many problems concerning R-factorizable groups remain
open. We consider the four questions posed below (see also [15]) to
be the most important of them. Recall that a topological space X is
said to be pseudo-R;-compact if any locally finite (or, equivalently, any
discrete) family of open sets in X is at most countable.

Question 1. Is any R-factorizable group pseudo-X;-compact?

Question 2. Is the image of an R-factorizable group under a contin-
uous homomorphism R-factorizable?

Note that Question 2 is equivalent to the question of whether the
image of an R-factorizable group under a continuous isomorphism R-
factorizable, because the quotients of R-factorizable groups are R-
factorizable [1, Theorem 8.4.2].

Question 3. Is the square of an R-factorizable group R-factorizable?

Question 4. Is the property of being R-factorizable topological in the
class of topological groups? In other words, is any topological group
homeomorphic to an R-factorizable one R-factorizable?

If H is a topological group and D is a discrete uncountable topolog-
ical group, then the group H x D is not R-factorizable, because it is
not w-narrow. Thus, the following question is of interest in relation to
Question 4.

Question 4’. Is it true that no R-factorizable group is homeomorphic
to a product H x D, where H is a topological group and D is an
uncountable discrete space?

The first question is most intriguing, at least because if the answer
to it is negative, then so are the answers to Questions 2 and 3. We
prove in this paper that the above questions are related as shown in
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the following diagram. An arrow A — B means that if the answer to
Question A is positive, then so is the answer to Question B.

2 > 1 < 3

L]

4 — 4

According to Theorem 8.5.2 of [1], a topological group G is R-
factorizable and pseudo-X;-compact if and only if it is m-factorizable,
that is, any continuous map f: G — M to any metrizable space M fac-
tors through a continuous homomorphism to a second-countable topo-
logical group. A class of m-factorizable groups is very important; see
Section 8.5 of [1]. Question 1 can be formulated as follows: Is any
R-factorizable group m-factorizable?

As the question of the existence of non-pseudo-X;-compact R-factorizable
groups is so important, we give these groups a name.

Definition. An R-factorizable group which is not pseudo-N;-compact
is called a weird R-factorizable group.

Yet another way to state Question 1 is: Is it true that weird R-
factorizable groups do not exist?

Weird R-factorizable groups have rather abnormal properties. In
this paper we obtain results which imply the following theorem.

Theorem A. Let G be a weird R-factorizable group. Then

(1) G x G is not R-factorizable;

(2) there exists a surjective continuous homomorphism of G to a
non-R-factorizable group;

(3) UJ(G) > w1,

(4) w(G)” > 29

(5) ¥(G) < w, that is, G is submetrizable;

(6) if H is a topological group and the group G x H is R-factorizable,
then
(a) H“ is hereditarily Lindelof and hereditarily separable;
(b) if w(H) < ws, then H is second-countable;
(¢) under CH, H is second-countable.

Assertion (1) follows from Exercise 8.5.a in [1] (see also Corollary 4.1
in the present paper), and assertion (4) follows from Theorem 8.5.8
in [1]. The other assertions of the theorem are new; their proofs are
given in Section 4.

It is seen from Theorem A that the problem of the existence of
weird R-factorizable groups is closely related to the R-factorizability
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of products of groups. Only recently has the fundamental question of
the multiplicativity of the class of R-factorizable groups been answered
by constructing Lindel6f (and hence R-factorizable) groups G and H
whose product G x H is not R-factorizable [8, 13]*; moreover, one of
these groups can be made second-countable. Section 3 of the present
paper is devoted to R-factorizable products of groups.

The key role in the study of R-factorizable products of groups is
played by the notion of an R-factorizable product of spaces.

Definition ([10, 8]). Given topological spaces X;,..., X, and Y, we
say that a map f: Xy x --- x X,, = Y is R-factorizable if it factors
through a product of continuous maps to second-countable spaces, that
is, if there exist second-countable spaces X7{,..., X/ and continuous
maps ¢;: X; — X/, i < n, and h: X{ x --- x X/ — Y such that
f=ho(g1 X - X gpn), i.e., the following diagram is commutative:

Xy X x X, / %

glm /

/ /
XX x X))

We say that a product X x- - -x X, is R-factorizable (or multiplicatively
R-factorizable, when there is a danger of confusion) if any continuous
function f: X; x --- x X7 — R is R-factorizable.

The notion of an R-factorizable map was introduced in [10], where
it was essentially proved that, for the free topological group F'(S) of
the Sorgenfrey line S, the product F'(S) x F'(S) is not multiplicatively
R-factorizable. In turn, the notion of a multiplicatively R-factorizable
product was introduced in [8]; in the same paper, the following state-
ment was proved, which is the main tool for constructing topological
groups whose products are not R-factorizable (as groups).

Theorem B ([8, Corollary 2(2)]). If the product G x H of topological
groups G and H s an R-factorizable group, then G X H is a multiplica-
tively R-factorizable product.

In this paper, we refine Theorem B as follows (see Theorem 3.1 in
Section 3).

Theorem C. For topological groups G and H, the following conditions
are equivalent:

(1) the group G x H is R-factorizable;

! As shown in [8], the products of Lindelsf groups constructed in [14, 12] are not
R-factorizable either.
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(2) G and H are R-factorizable and the product G x H is multi-
plicatively R-factorizable.

In [9] the notion of R-factorizability was extended from the class
of topological groups to the much larger class of topological universal
algebras. Results of [9] have enabled us to prove the following statement
(see Theorem 3.2 below).

Theorem D. Let G be a topological group. Then the group G x G
1s R-factorizable if and only if the product G x G is multiplicatively
R-factorizable.

Corollary. Given a topological group G, the R-factorizability of the
group G x G is a topological property of G. In other words, if the group
G x G 1s R-factorizable and H s a topological group homeomorphic to
G, then the group H x H is R-factorizable.

This corollary shows why a positive answer to Question 3 gives a
positive answer to Question 4.

In [3] Blair and Hager considered conditions under which a product
X x Y is z-embedded in X x fY. We will show in Section 2, which
is devoted to multiplicatively R-factorizable products, that a product
X XY has this property if and only if it is R-factorizable (see Propo-
sition 2.1). In the same section we also prove the following statement
(this is Theorem 2.1).

Theorem E. Suppose that a product X x Y is R-factorizable and Y
18 not pseudo-Nq-compact. Then

(1) X¥ is hereditarily Lindelof and hereditarily separable;
(2) if w(X) < wi, then X is second-countable;
(3) under CH, X is second-countable.

This theorem strengthens Proposition 2.1(b) of [3].

The CH assumption cannot be omitted from (3), because it has
recently been shown by the authors jointly with Anton Lipin that if
b > wy, then the product of the countable Fréchet—Urysohn fan and a
discrete space of cardinality w; is R-factorizable.

1. PRELIMINARIES

All topological spaces and groups considered in this paper are as-
sumed to be Tychonoff. Throughout the paper, by a space we mean
a topological space and use I to denote an arbitrary index set. Given
ordinals o and 3, by [«, 5] we denote the set of all ordinals ~y satisfy-
ing the inequalities a < v < . The weight of a space X is denoted



6 EVGENII REZNICHENKO AND OL’GA SIPACHEVA

by w(X) and its pseudocharacter (that is, the least cardinal x such
that every point of X is the intersection of at most x-many neighbor-
hoods), by ¥(X). By a Lindeldf 3-group we mean a topological group
whose underlying topological space is a Lindelof »-space, that is, can
be represented as a continuous image of a perfect preimage of a second-
countable space. A topological space X is said to be perfectly sc-normal
if the closure of any open set in X is a zero set.

Definition 1.1. Given a cardinal s, a topological space X is said to
be pseudo-k-compact if the cardinality of any locally finite family of
open sets in X is less than k.

Remark 1.1. Tt is easy to see that a Tychonoff space X is pseudo-x-
compact if and only if the cardinality of any discrete family of cozero
sets in X is less than k.

Indeed, suppose that there exists a locally finite family {U, : « € k}
of nonempty open sets in X. Let us show that there exists a discrete
family of cozero sets which has cardinality x. Choose points z, € X
and cozero sets V,, C X so that z, € V, C U, and V,, intersects only
finitely many sets Us for each a < k. Let f: K = « be a function such
that V, N V3 = @ for all 5 > f(a). Clearly, f is increasing and the
family {Vjy) : @ € K} is a locally finite disjoint (and hence discrete)
family of cozero sets.

Definition 1.2. A topological group G is said to be w-narrow if, for
every open neighborhood V' of the identity element in GG, there exists
a countable set A C G such that VA = G (or, equivalently, such that
AV =G).

According to [1, Proposition 8.1.3], every R-factorizable group is w-
narrow.

Definition 1.3. A subspace Y of a topological space X is said to be
z-embedded in X if, for every zero set Z in Y, there exists a zero set F'
in X such that FNY = Z.

Clearly, “zero” in this definition can be replaced by “cozero.” It is
also clear that any z-embedded subspace Z of a z-embedded subspace
Y of a space X is z-embedded in X.

The property of being z-embedded plays a crucial role in the theory
of R-factorizable groups, because an w-narrow topological group G is
R-factorizable if and only if G is z-embedded in every topological group
that contains G as a topological subgroup [1, Theorem 8.2.7].

Recall that a subspace Y of a space X is C'-embedded (C*-embedded)
in X if any continuous (any bounded continuous) function f: Y — R
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has a continuous extension to X. Obviously, all C- and C*-embedded
subspaces of X are z-embedded. It is also known that a zero set YV
of X is z-embedded in X if and only if Y is C*-embedded in X [5,
Corollary 11.7]. On the other hand, any cozero set of X is z-embedded
in X [5, Lemma 11.12].

Remark 1.2. The union of any discrete family of cozero sets in a space
X is z-embedded in X.

Indeed, let Z = {U, : v € I} be a discrete family of cozero sets, and
let f,: X — [0, 1] witness their being cozero. The function

f=) f:X->R
el

is well defined (because % is disjoint) and continuous (because % is
discrete and hence locally finite). Clearly, f~'({0}) = X \|J% . Thus,
U % is a cozero set in X; therefore, it is z-embedded.

Remark 1.3. Let % = {U, : « € I} be a discrete family of nonempty
cozero sets in a space X, and let y, € U, for each + € I. Then the
(discrete) set Y = {y, : ¢ € I} is C-embedded in X.

Indeed, let f,: X — R be continuous functions witnessing that the
U, are cozero, and let g: Y — R be any function. The function

o 9w)
f_;fb(yb) f: X =R

is well defined and continuous, and its restriction to ¥ coincides with g.

Recall that a topological space is submetrizable if it admits a coarser
metrizable topology. In this paper we repeatedly use the following
well-known theorems.

Theorem 1.1 (see, e.g., [1, Theorem 3.3.16]). A topological group is
submetrizable if and only if it has countable pseudocharacter.

Theorem 1.2 ([1, Theorem 8.4.2]). The image of an R-factorizable
group under a quotient (= open) homomorphism is R-factorizable.

2. R-FACTORIZABLE PRODUCTS

Definition 2.1. A cozero rectangle in a product X x Y of topological
spaces X and Y is any set of the form V' x W, where V' and W are
cozero sets in X and Y, respectively.

Proposition 2.1. For any spaces X and Y, the following conditions
are equivalent:

(1) X xY is R-factorizable;
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(2) any cozero set in X XY is a countable union of cozero rectangles;

(3) X xY is z-embedded in BX x BY;

(4) if X is z-embedded in X' and Y is z-embedded in'Y’, then X xY
is z-embedded in X' x Y';

(5) there exist spaces X' and'Y' such that X' xY" is R-factorizable
and X XY is z-embedded in X' x Y’;

(6) there exist spaces X' and Y’ such that X' x Y" is Lindeldf and
X XY is z-embedded in X' x Y'.

Proof. First, we prove the implication (1) = (2). Let U be a cozero
set in X x Y, and let f be a continuous function on X X Y such that
(X xY)\U = f1({0}). Since X x Y is R-factorizable, it follows
that there exist second-countable spaces M and H, continuous maps
p: X — M and ¢: Y — H, and a continuous function h: M x H —- R
such that f = ho(pxq). The preimage h~'(R\{0}) is a cozero set in the
second-countable Tychonoff space M x H; hence there exist cozero sets
Vi C M and W; C H, i € w, such that A~ (R \ {0}) = U, (Vi x W}).
We have U = Uzew( V) x ¢ H(W5)), and the p~1(V;) and ¢~ 1(W};)
are cozero sets in X and Y, respectively.

Now we show that (2) = (1). Let # = {U,, : n € w} be a countable
base of the topology of R, and let f: X x Y — R be a continuous
function. By assumption, for each n € w,

f_l(Un) = U(Vn,i X Wn,i)7
1EW
where the V,,; and W, ; are cozero sets in X and Y, respectively. Let

Gni: X = Rand h,;: Y — R be continuous functions for which V,,; =
gm(R \ {0}) and W,,; = h, i (R \ {0}). We set

g= /A Gni: X >R and h= /A hpi: Y - R

We have
(9 x )" ((g x h)(F7H(U)) = f(Un),
because (x,y) ¢ f~1(U,) if and only if
(g X h)((l‘,y)) = ((an,i>(n,i)6wxw> (bn,i)(n,i)Ewa)a

where a,,; - by,; = 0 for all i € w. Note that if f((z,y)) # f((2,v)),
then there exists an n € w for which f((z,y)) € U, and f((«',y)) ¢
U, whence (g % h)((a:, y)) #+ (g X h)((:v’, y’)). Therefore, setting

g@((a, b)) = f(z,y), where (z,y)is any point in (g x h)™" ({(a,b)}),
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we obtain a well-defined function ¢: (¢ x h)(X x Y) — R. For each
n e w,

90_1(Un) =
U{((an,i)(n,i)ewxwa (bn,i)(n,i)Ewa> S (9 X h)<X X Y) Qpg bn,i 7£ 0}

1€w
All these sets are open in (g x h)(X x Y) and hence ¢ is continuous.
Clearly, f =@ o (g x h).

The equivalences (2) < (3) < (4) follow from Theorem 1.1 of [3].

Let us prove (5) < (6). Since any cozero set is F,, Lindel6fness is
preserved by F,, subspaces, and any open set in a product of Tychonoff
spaces is a union of cozero rectangles, it follows from (1) < (2) that
all Lindelof products are R-factorizable. Therefore, (6) = (5). To see
that (5) = (6), it suffices to note that if X’ x Y is R-factorizable, then
X' xY"is z-embedded in X’ x BY’ (because (1) = (3)) and hence
X xY is z-embedded in fX’ x 5Y".

The implication (3) = (6) is obvious. It remains to show that (5) =
(2). Let U be a cozero set in X x Y, and let U’ be a cozero set in an
R-factorizable product X’ x Y’ for which U = U’ N (X x Y). Since (2)
holds for X’ x Y”, it follows that U’" = (J, ., (Vs x W,,), where the V,
and W, are cozero sets in X’ and Y’, respectively. Clearly, the V,, N X
and W,, NY are cozero sets in X and Y. We have

U= (U(anWn)>ﬂ(X><Y): (Ve x W) 0 (X x V)

new new

= J (v, nX) x (W, xY)).

new

Thus, (2) holds for X x Y. O

The paper [3] studied pairs of spaces X and Y satisfying condition
(3) in Proposition 2.1. According to this proposition, (3) is equivalent
to the R-factorizability of the product X x Y. In what follows, when
referring to [3], we will bear in mind the equivalence (1) < (3).

Given a cardinal k, by D(k) we denote x with the discrete topology;
thus, D(k) is a discrete space of cardinality k.

Proposition 2.2. If a product X XY of spaces is R-factorizable and Y
contains a discrete family of open sets of cardinality k, then the product
X x D(k) is R-factorizable.

Proof. Let {U, : o < Kk} be a discrete family of nonempty open sets
in Y. We choose y, € U, for each @ < k and set Q = {y, : a < K}.
Clearly, @ is homeomorphic to D(k).
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We claim that X x @ is C-embedded in X x Y. Indeed, let f be a
continuous function on X x (). For each a < k, we choose a continuous
function g, : Y — [0, 1] such that g,(Y \U,) = {0} and ¢,(y.) = 1 and
define a function h,: X XY — R by setting hq(z,y) = (2, Ya) - 9a(y)
for (z,y) € X xY. The function h = >____h, is a continuous extension
of f.

Since X x @ is C-embedded in X x Y, it follows that X x @ is z-
embedded in X x Y. According to Proposition 2.1, the product X x Q)
is R-factorizable. U

a<k

Proposition 2.3. For a space Y and a cardinal k, the following con-
ditions are equivalent:

(1) X x D(k) is R-factorizable;

(2) for any family {F, : a < &} of zero sets in X, there ezists a
second-countable space M and a continuous map g: X — M
such that F, = g~ *(g(F.)) and g(F,) is closed in M for each
a < K;

(3) every continuous map f: X =Y to a space Y with w(Y) < k
factors through a continuous map to a second-countable space.

Proof. Let us prove that (1) = (2). For each o < k, we fix a continuous
function f, on X such that f;1({0}) = F,. The function

f: X xD(k) =R, (z,a)— fo(x),

is continuous. Condition (1) implies the existence of second-countable
spaces M and F and continuous maps g: X — M, q: D(k) — E,
and h: M x E — R for which f = ho (g x q). For each a < k&,
F, C g7'(g9(F,)). On the other hand, if z € g7 (g(F,)), then there
exists a y € F, for which g(y) = g(z) and f((z,a)) = h(g(z),q(a)) =
h(9(y),q(a)) = f((y,a)) = 0, which means that f,(z) = 0 and z €
F,. Thus, F, = g '(g(F,)). Note that, for x € M and a € w,
h(x,q(a)) = 0if and only if there exists a z € X for which g(z) = z and
f(z,a) =0, ie., z € F, and x € g(F,). Therefore, g(F,) x {¢(a)} =
h=1({0}) N (M x {q(c)}). This set is closed in M x {q(«)}, and hence
g(F,) is closed in M.

To prove (2) = (3), we take a base {U, : @ < k} of Y consisting
of cozero sets and put F, = f~1(Y \ U,) for « < k. Let M and
g: X — M be as in (2). Note that if x,y € Y and f(z) # f(y), then
g(x) # g(y). Indeed, there exists an a < k for which f(x) € U, and
fly) ¢ Uy, that is, x ¢ F, and y € F,. Since g~ '(g(F,)) = F,, it
follows that g(x) ¢ g(F,), while g(y) € g(F,). Therefore, choosing an
arbitrary point 2’ € g7'(2) and setting h(z) = f(2') for every z € Z,
we obtain a well-defined map h: Z — X. It is continuous, because
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Y (U,) = M\ g(F,) and g(F,) is closed by assumption. Clearly,
f=hog.

It remains to prove the implication (3) = (1). Let ¢ be a continuous
function X x D(k) — R. For each a € D(k), we define a function
fa: X = Rby folz) = p(z,a) for z € X and set f = Aqcy fo: X —
R*. Condition (3) implies the existence of a second-countable space M
and continuous maps g: X — M and h: M — R” such that f = hog.
Let 7,: R® — R denote the projection onto the ath coordinate for
a < Kk, and let

v: M x D(k) =R, (z,a) = m(h(2)).

The function 1 is continuous, and ¢ = 1) o (g X idp(). Since M is
second-countable, it follows that the product M x D(x) is R-factorizable
[3, Theorem 3.2]. Hence there exist second-countable spaces M and S
and continuous maps i: M — M’ q: D(k) — S, and v: M’ x S — R
for which ¢y = vo (i x q). Let u = vo (i xidg). Then p is a continuous
map M xS — Rand ¢ = po(idy xq). We have ¢ = o (g xidp()) =
po (ida xq) o (g x idpwy) = o (g x q). O
Proposition 2.4. Let k be a cardinal, and let X be a space with

w(X) < k. If the product X x D(k) is R-factorizable, then X is second-
countable.

Proof. Proposition 2.3 implies the existence of a second-countable space
M and continuous maps g: X — M and h: M — X for which idx =
h o g. Obviously, the maps g and h are homeomorphisms. U

Proposition 2.4 strengthens Theorem 3.1 of [3].

Proposition 2.5. If X x D(wy) is R-factorizable, then so is X x
D(wl)

To prove this proposition, we need a lemma. Given a map f: X —
Y, by f*“ we denote the product map X* — Y¥. Let us say that
a subset F' of X“ is a strong zero set in X* if there exists a second-
countable space M and a continuous function f: X — M such that

F=(f)""(f“F)) and [f*“(F)is closed in M*.

Lemma 2.1. If X x D(wy) is R-factorizable, then any closed subset of
X% 15 a strong zero set.

Proof. Suppose that there exists a closed set F' in X*“ which is not
a strong zero set. To obtain a contradiction, we will recursively con-
struct second-countable spaces Mg, continuous maps fg: X — Mg,
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and strictly decreasing strong zero sets Fj for 5 < w; so that

Fy=(f5)"(f;*(F)) andhence f3*(Fs) = f;°(F) (¥

for each § < wi. We define M to be a singleton and fy to be the map
X — My. For Fy we take X“. Suppose that o > 0 and Mp, fsz, and
Fjp are defined for all 8 < a. We set

fr= A fo: X = [[Ms and F; = (f2°)7" (f27(F)).
B<a

From (%) it follows that F! C Fj for all § < a. The set F satisfies
condition (x) and hence F # F, because F' is not a strong zero set.
Clearly, F' C F;. Take

(Tn)n<w € Fi \ F C X*.

Since F'is closed in X“, there exists an N < w and cozero sets U; C X,
1 < N, such that

(T)necw EUp X Ug X -+ X Uy X X X X x X x --- C X¥\ F.

For each n < N, let g,: X — [0, 1] be a continuous function such that
gn(zn) =0 and g,(X \ U,) C {1}. We set

My =RNx[[ M5, fu= (%Vgn) Afy, and  Fy = (fX9)7H(fxe(F)).

B<a

Note that (z,)n<w ¢ Fio. Indeed, for each i < N, the ith coordinate of
f§w<(xn)n<w) is

((A g0) A S (i) e R x {0} x RV x H Mg,

n<N B<a

while for every ((yn)new) € F, there exists an ¢ < N for which y; ¢ U,
so that the ith coordinate of fcf“’((yn)n<w) is

((A 9n) AF2) () € RN x {1} x RN x T Mg,

B<a
whence
feF) | Mirt x (R x {1} x RN= x [ M) x Mo x M, x .
<N [B<a
= M x (R {1} x RV x [ Ma) x Mo x M, x .
<N B<a

Thus, F,, C F; C Fs, B < a.
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Having constructed M, f,, and F, for all o < wy, we set

Y=]] Mo and f= A fo: XY,
a<w a<wi

By Proposition 2.3 (3) there exists a second-countable space M and
continuous maps g: X — M and h: M — Y for which f = hog. We
have f*“ = h*¥ o g*“. Let

ey = (11 Ma>w—> IT M

a<wi a<wi

be the obvious homeomorphism permuting factors. Then

(poh™)og=po ™= A [ X |] Mg
1 a<wi

Note that the sets
Fo=11rcF) x [ M2 B<uw,

v<B B<y<wi

are closed in [, _,, M¥ and F = (Aa<u, f§W)_1(Fé). Since Fj strictly
decrease, it follows that (¢ o h*“)™"(F}), 8 < wy, form a strictly de-
creasing sequence of closed sets in the second-countable space MY.
The complements to these sets form an uncountable open cover of the
complement to their intersection having no countable subcover, which
cannot exist, because M is hereditarily Lindelof. This contradiction
proves that any closed subset of X“ is a strong zero set. O

Proof of Proposition 2.5. 1t suffices to show that X% satisfies condi-
tion (2) of Proposition 2.3. Let {F, : @ < w;} be a family of zero
sets in X“. By virtue of Lemma 2.1, for each a < wy, there exists a
second-countable space M, and a continuous map f,: X — M, for

which
Fo=(f2)7"(f2%(F,)) and fX“(F,) is closed in M. (xx)

« 67

Let Y, f, M, g, h, and ¢ be defined as in the proof of Lemma 2.1. It
follows from (xx) that, for each 8 < wy,

Fy=(A L7 (A fZ29F) and - A f2(Fp) is closed in [T My,

a<wi a<wi a<wi

a<wi
whence
Fs=(po f*) (po [**)(Fs)) and Fz=(g°“)" (9" (Fp)),
because Agcy, fo¥ = @ o f*¥ = (¢ o h*¥) o ¢*“. From the same

considerations it follows that ¢*“(Fs) = (¢ 0 B*“) ™ (Agecw, [X4(F5))
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and, therefore, g*“(Fj) is closed in X*. Thus, condition (2) of Propo-
sition 2.3 does hold for {F, : @ < w;} (with M* and ¢g*“ playing the
roles of M and g). O

Proposition 2.6. If X x D(w;) is R-factorizable, then X* is heredi-
tarily Lindelof and hereditarily separable.

Proof. In view of Proposition 2.5, it suffices to prove that X is heredi-
tarily Lindel6f and hereditarily separable.

First, we show that X is hereditarily Lindelof. Suppose it is not.
Then there exists a right separated set in X, i.e., a subspace R = {z, :
a < wp} C X in which all initial segments {zp : f < a}, a < wy, are
open [6]. For each 8 < wy, let Ug be a cozero neighborhood of x5 in X
such that U, N R C {z, : v < B+1}. Then the sets F,, = X \U,_, Us,
a < wy, are zero sets in X, and they strictly decrease, because a €
F, \ F,y for each o < wy. Proposition 2.4 implies the existence of a
second-countable space M and a continuous map g: X — M such that
F, =g '(g(F,)) and g(F,) is closed in M for each a < w;. Therefore,
(g(Fa))oKw1 is a strictly decreasing wi-sequence of closed sets in the
second-countable space M and {M \ g(F,) : @ < w;} is an uncountable
open cover of M\, ., 9(Fa) containing no countable subcover, which
cannot exist, because M is hereditarily Lindelof.

Thus, X is hereditarily Lindelof and, therefore, perfectly normal.

Let us prove that X is hereditarily separable. Suppose it is not. Then
there exists a left separated set in X, i.e.,aset L ={z,:a<w} C X
such that {xs : 8 < a} is closed in L for each o < wy [6]. Clearly, the
closed subsets F,, = {zg : § < a} of X strictly increase. They are zero
sets, because X is perfectly normal. According to Proposition 2.4, there
exists a second-countable space M and a continuous map ¢g: X — M
such that F, = ¢g7'(g(F,)) and g(F,) is closed in M for each o < wj.
Thus, (g(F,)l))oKw1 is a strictly increasing wq-sequence of closed subsets
of M and M" = J,_,,, 9(F&) is a nonseparable subspace of M, because
any countable subset of M’ is contained in g(F,,) for some o < w. Such
an M’ cannot exists, since M is hereditarily separable. 0

As is known, any space X whose square is hereditarily Lindelof is
submetrizable (see, e.g., [4, Lemma 8.2]). This implies the following
assertion.

Corollary 2.1. Any space X for which X x D(w) is R-factorizable is
submetrizable.

Proposition 2.7. Any space X for which the product X x D(2%) is
R-factorizable is second-countable.
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Proof. 1t follows from Proposition 2.6 that X is separable. Therefore,
w(X) < 2% and X is second-countable by Proposition 2.4. O

Corollary 2.2 (CH). Any space X for which the product X x D(wy)
1s R-factorizable is second-countable.

As mentioned in the introduction, the CH assumption cannot be
omitted, because if b > wy, then the product of the countable Fréchet—
Urysohn fan and D(w;) is R-factorizable.

Theorem 2.1. If a product X XY of spaces is R-factorizable and Y
s not pseudo-Ri-compact, then

(1) X% is hereditarily Lindeléf and hereditarily separable;
(2) if w(X) < wy, then X is second-countable;
(3) under CH, X is second-countable.

Proof. 1t follows from Proposition 2.2 that X x D(w;) is R-factorizable.
Hence Propositions 2.6 and 2.4 imply (1) and (2) and Corollary 2.2
implies (3). O

3. R-FACTORIZABLE PRODUCTS OF TOPOLOGICAL GROUPS

Theorem 3.1. For topological groups G and H, the following condi-
tions are equivalent:

(1) G x H is an R-factorizable group;
(2) the groups G and H are R-factorizable and the product G x H
1s multiplicatively R-factorizable.

Proof. First, we show that (1) = (2). The projections of Gx H onto the
factors are open homomorphisms; hence by Theorem 1.2 the groups G
and H are R-factorizable. According to Theorem B, the product G x H
is multiplicatively R-factorizable.

Let us prove that (2) = (1). The group G is w-narrow, being R-
factorizable [1, Proposition 8.1.3]. According to a theorem of Guran
(see [1, Theorem 3.4.23]), G is a topological subgroup of a product G’
of second-countable topological groups. Since G is R-factorizable, it
follows that G is z-embedded in G’ [1, Theorem 8.2.7]. Similarly, H
is z-embedded in a product H' of second-countable topological groups.
Hence G x H is z-embedded in G’ x H' by Proposition 2.1. Since
G' x H' is a product second-countable topological groups, it follows by
Theorem 8.1.14 of [1] that G’ x H' is an R-factorizable group. According
to [1, Theorem 8.2.7], the group G x H is R-factorizable, because it is
z-embedded in the R-factorizable group G’ x H'. O
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Proposition 3.1. If a product GX H of topological groups is multiplica-
tively R-factorizable, then either both groups G and H are w-narrow or
one of them is R-factorizable.

Proof. Theorem 2.1 implies that either both groups G and H are pseudo-
Ni-compact or one of them is Lindelof. It remains to recall that
any pseudo-N;-compact group is w-narrow [1, 3.4.31] and any Lindelof
group is R-factorizable [1, 8.1.6]. O

Question 5. Is it true that if a product G x H of topological groups
is multiplicatively R-factorizable, then one of the groups G and H is
R-factorizable?

When the product G x H is a square, the answer to this question
is positive even in the much more general case of topological universal
algebras.

Recall that an n-ary operation on a set X is any map from X" to X.
A universal algebra is a nonempty set X together with a set of opera-
tions on X. If X is endowed with a topology and all of these operations
are continuous, then X is called a topological universal algebra. The
operations are indexed by the elements of a set ¥ of symbols of oper-
ations. This set X, together with a map v: ¥ — w assigning arity to
each o € X, is called a signature. A universal algebra with a signature
> is called a Y-algebra. For o € X, the operation on a X-algebra with
index o is usually denoted by the same symbol o. Groups are univer-
sal algebras with signature X, = {e, ', }, where e is the symbol of
a nullary operation (which is identified with the identity element of a
group), ~! is the symbol of a unary operation (inversion), and - is the
symbol of a binary operation (multiplication). Topological groups are
topological >4,-algebras.

Let X be a signature. A map ¢: X — Y of -algebras is called a ho-
momorphism if, for any n € w, any symbol ¢ € ¥ of an n-ary operation,
and any i, Ta,...,Tn € Xa 90(0@31’ Loy ... 7xn)> = J(Sp(xl)v 90(.%’2), ) gO(-’I?n))

Definition 3.1 ([9]). Let X be a signature. A topological ¥-algebra X
is said to be R-factorizable if, given any continuous function f: X — R,
there exists a second-countable topological »-algebra Y, a continuous
homomorphism ¢g: X — Y, and a continuous function h: ¥ — R such

that f =hog.

Formally, Definition 3.1 as applied to a topological group treated as
a universal algebra differs from the definition of the R-factorizability
of topological groups, because Definition 3.1 does not require Y to be
a topological group, it only requires it to be a topological >,,-algebra,
that is, a set with a nullary operation e, a unary operation !, and a
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binary operation - on which no constraints (like associativity of mul-
tiplication and the familiar properties of e and ~!) are imposed. But
in fact these definitions coincide, because it is easy to see that any
homomorphic image of a group is a group and, therefore, Y is a topo-
logical group. Similar considerations apply to topological semigroups
and paratopological groups.

The most studied and interesting case is that of universal algebras
with finite signature. In [9] the general case was considered, in which
the signature has arbitrary cardinality and is endowed with a topology.
In what follows, we consider universal algebras with finite signature, in
which case the signature is a finite discrete space.

In [9] the notion of an R-factorizable product X™ over a signature X
was introduced. In the case of a finite discrete signature, this notion
coincides with that of a multiplicatively R-factorizable product X™.
The following proposition follows from Theorem 12 in [9].

Proposition 3.2. Let X be a topological -algebra with finite signa-
ture Y such that the arities of all operations o € ¥ do not exceed n.
If the product X™ is multiplicatively R-factorizable, then X is an R-
factorizable topological Y-algebra.

Corollary 3.1. If the square G x G of a topological group G is multi-
plicatively R-factorizable, then the group G is R-factorizable.

Theorem 3.2. Let G be a topological group. The product G x G s
multiplicatively R-factorizable if and only if the group G x G s R-
factorizable.

Proof. Suppose that the product G x G is multiplicatively R-factorizable.
Then the group G is R-factorizable by Corollary 3.1. According to The-
orem 3.1, the group G' x G is R-factorizable as well.

Conversely, if the group G x G is R-factorizable, then the product
G x G is multiplicatively R-factorizable by Theorem B. O

Corollary 3.2. Let G be a topological group homeomorphic to a dense
subspace of a product X of Lindelof ¥-groups. Then G* is R-factorizable
for any cardinal k.

Proof. According to Theorem 8.4.6 of [1], any product of Lindel6f X-
groups, in particular X* x X", is perfectly s-normal. Since G* x G*
is homeomorphic to a dense subspace of X* x X", it follows by Theo-
rem 5.1 of [2] that G* x G* is z-embedded in X" x X*. By Theorem 3.2
X" x X" is multiplicatively R-factorizable, because any product of Lin-
delof Y-groups is R-factorizable [1, Theorem 8.1.14]. Therefore, so is
G" x G". Tt remains to apply Corollary 3.1. U
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Proposition 3.2 implies also the following statements.

Corollary 3.3. Let G be a topological semigroup. If the product G x G
is multiplicatively R-factorizable, then the semigroup G is R-factorizable.

Recall that a paratopological group is a group with a topology with re-
spect to which multiplication is continuous. We say that a paratopolog-
ical group is R-factorizable if, given any continuous function f: G — R,
there exists a second-countable paratopological group H, a continuous
homomorphism h: G — H, and a continuous function g: H — R for
which f = go h.

Corollary 3.4. Let G be a paratopological group. If the product G x G
1s multiplicatively R-factorizable, then G is R-factorizable.

Proof. Let f: G — R be a continuous function. Since G is a topological
semigroup, by Corollary 3.3 there exists a second-countable topological
semigroup H, a continuous homomorphism h: G — H, and a contin-
uous function g: H — R for which f = go h. We can assume that
h is surjective. Since h(x -y) = h(z) - h(y), it follows that, for any
y € H and any = € h™'(y), we have h(z™') -y =y - h(z™') = h(e) and
h(e) -y =y - h(e) = y. Therefore, H is a group with identity element
h(e) and inversion h(z)~ = h(x™!) (recall that h is a surjection). Thus,
H is a paratopological group and A is a group homomorphism. U

Corollary 3.5. Let G be a paratopological group. If the product G x G
1s Lindelof, then the paratopological group G is R-factorizable.

Proof. By Proposition 2.1 (6) G x G is multiplicatively R-factorizable,
and by Corollary 3.4 G is R-factorizable. O

Corollary 3.6. If G s a topological group such that the group G x G is
R-factorizable and a topological group H is homeomorphic to G, then
the group H x H is R-factorizable.

Proof. If the product G x G is productively R-factorizable, then the
group G x (G is R-factorizable by Theorem 3.2. The group G is the
image of G X GG under the natural projection homomorphism, which is
continuous and open. Therefore, GG is R-factorizable by Theorem 1.2.

O

4. WEIRD R-FACTORIZABLE GROUPS
Theorems 2.1 and 3.1 have the following immediate consequence.

Theorem 4.1. If G is a weird R-factorizable group, H is a topological
group, and the group G X H is R-factorizable, then
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(1) H* is hereditarily Lindelof and hereditarily separable;
(2) if w(H) < wi, then H is second-countable;
(3) under CH, H is second-countable.

4.1. Squares of R-Factorizable Groups. Theorems 3.2 and 2.1 im-
ply the following statement.

Theorem 4.2. If G is a topological group and the group G X G s
R-factorizable, then G is pseudo-R;-compact.

Indeed, by Theorem 3.2 G' x G is multiplicatively R-factorizable and
by Theorem 2.1 if G is not pseudo-N;-compact, then it must be hered-
itarily Lindelof, which is impossible.

Corollary 4.1. The square of a weird R-factorizable group is never
R-factorizable.

4.2. R-Factorizable Groups of Uncountable Pseudocharacter.

Theorem 4.3. Any R-factorizable group of uncountable pseudochar-
acter is pseudo-Ny-compact.

Corollary 4.2. Any weird R-factorizable group has countable pseu-
docharacter, i.e., is submetrizable.

The proof of Theorem 4.3 is based on the following lemma.

Lemma 4.1. Suppose given a discrete family {U, : o < w1} of cozero
sets in a topological group G and nonempty zero sets F, C U,, a <
wy. Then there exists a second-countable group H and a continuous

homomorphism h: G — H such that h(F),) is closed and h™*(h(F,)) =
F, for each o < wy.

Proof. First, we choose sets ), C wy, n € w, so that, for every a € wy,

ﬂ{Qn IS Qn} = {a}

As such sets we can take any countable base of any second-countable
topology on w;. Let

Sn:U{Fa:aeQn}, neE w.

Since all F,, are pairwise disjoint, it follows that, for each a < wy,
F,NS, ¢ @ if and only if o € @,,, in which case F, C S,,. Moreover,
if B # «, then there exists an n € w such that a € @, and 5 ¢ Q,,
that is, F,, C S, and FgN S, = &. Therefore,

Fo=({Sn:a€Qu}
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For each a < wy, we fix a continuous function f,: G — R such that
YR\ {0}) =U, and f;'(1) = F,. We set

gon:Zfa:G—HR, n e w.

CMEQTL

Every function ¢, is well defined and continuous, because the fam-
ily {U, : @ € Q,} is discrete; hence there exists a second-countable
group H,, a continuous homomorphism h,: G — H,, and a con-
tinuous function g¢,: H, — R for which ¢, = g, o h,. Note that
Sn=n ({1}) = by Mg, ({1}1)-

We set

h=/Ah,:G—[[H, and H=h(G).

new new

Since F, = ({Sn : @ € Q,}, it follows that = € F, if and only if
h,(z) € g, '(1) whenever a € @Q,,. Thus,

F, = h’l({(:z:n)new € H:x, € g, (1) for all n € w such that a € Qn})

It follows from the continuity and surjectivity of h that h(F,,) is closed
in H and h"Y(h(F,)) = F,. O

Proof of Theorem 4.3. Let G be an R-factorizable group of uncount-
able pseudocharacter with identity element e. Suppose that G is not
pseudo-R;-compact and let {U, : o < w;} be a discrete family of
nonempty cozero sets. For each a < wy, we choose z, € U, and a zero
set Z, C U, so that

(i) e€ Zy Cayt U,

(ii) Zo C Zg and Z, # Zs if § < «.
This can easily be done by transfinite recursion as follows. For Z, we
take any zero set containing e and contained in x5 ' - Uy. Assuming that
a > 0 and Zz are defined for 8 < «, we choose any zero set F, C U,
containing z' and put Z, = (z;' - F},) N (4., Zs Since Z, is a Gs-
set and the pseudocharacter of GG is uncountable, it follows that there
exists an x € Z!, \ {e}; for Z, we take the intersection of Z/, with any
zero set containing e and not containing x.

Let F, = x, - Z, for a < w;. Then the sets U, and F, satisfy

the assumptions of Lemma 4.1. Hence there exists a second-countable
group H and a continuous homomorphism h: G — H such that

(i) all A(F,) are closed and hence so are all
W(Za) = h(zg" - Fa) = h(x,") - h(Fa);
(i) B (h(F)) = Fu.
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Let N be the kernel of h. Then F, = N - F, and
ht(h(Zy)=h Yo' F))=N-a,' Fy=a.' - F, = Z,.

Therefore, h(Z,) # h(Z3) for a # j.

Thus, the subsets h(Z,), a < wy, of H are closed and strictly de-
crease. Their complements form an uncountable open cover containing
no countable subcover in the second-countable space H \ [, ., M(Za).
This contradiction shows that the family {U, : @ < w;} cannot exist
and G is pseudo-N;-compact. O

Corollary 4.3. If G and H are topological groups at least one of
which is of uncountable pseudocharacter and the group G x H is R-
factorizable, then both G and H are R-factorizable and pseudo-N;-
compact.

Proof. According to Theorem 4.3, the group G x H is pseudo-N;-
compact; hence so are its images G and H under continuous open pro-

jection homomorphisms. By Theorem 1.2 they are also R-factorizable.
O

It follows from Theorem 1.1 that every nonmetrizable compact group
has uncountable pseudocharacter, because compact spaces do not ad-
mit strictly coarser Hausdorff topologies. Therefore, Corollary 4.3 im-
plies the following theorem of [1].

Corollary 4.4 ([1, Theorem 8.5.11]). If G is a topological group, H
s a nonmetrizable compact topological group, and the group G x H is
R-factorizable, then G is pseudo-R;-compact.

Corollary 4.5. If an R-factorizable group G contains a nonmetrizable
compact subspace, then G is pseudo-Ri-compact.

Proof. Let K be a compact subspace of G. If G is not pseudo-N;-
compact, then by Corollary 4.2 it is submetrizable and hence so is K.
Since compact spaces do not admit strictly coarser Hausdorff topolo-
gies, it follows that K is metrizable. 0

4.3. R-Factorizable Groups of Regular Uncountable Weight.
It follows from Theorems 8.5.2 and 8.5.8 of [1] that any R-factorizable
group G with w(G)“ < 2“! is pseudo-R;-compact. Therefore, under the
assumption 2¥ < 2“1 any R-factorizable group of weight w; is pseudo-
Ni-compact. In this section, we show that this assumption can be
removed. Moreover, we prove that any R-factorizable group of regular
uncountable weight x is pseudo-x-compact.
We begin with a simple observation.
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Remark 4.1. Any R-factorizable group G of weight k embeds in a prod-
uct of k-many second-countable groups as a subgroup.

Indeed, since G is Tychonoff, its topology has a base {B, : a < k}
consisting of cozero sets. Continuous functions f,: G — R witnessing
that the B, are cozero separate points from closed sets, and each f,
factors through a continuous homomorphism h,: G — H, to a second-
countable group H,. Clearly, the homomorphisms h,, separate points
from closed sets as well, so that the diagonal A,<, ha: G = [[,-,. Ha
is a topological isomorphic embedding.

Theorem 4.4. Any R-factorizable group of reqular uncountable weight
K 18 pseudo-Kk-compact.

Corollary 4.6. If G is a weird R-factorizable group, then w(G) > w;.

Proof of Theorem 4.4. Suppose that x is a regular uncountable cardi-
nal and an R-factorizable group G of weight « is not pseudo-x-compact,
i.e., contains a discrete family {U, : @ < k} of nonempty cozero sets.
Take y, € U, for each @ € k and let Y = {y, : @« < k}. The set
Y is C-embedded in G (by Remark 1.3) and G is z-embedded in a
product [],_, H, of second-countable groups H, (by Remark 4.1 and
Theorem 8.2.7 of [1]); hence every set P C Y is cozero in ], _,. Ha
(because any such set is cozero in the discrete space Y).

Choose a countable base %, of the topology of H, for each o < k.
Recall that the standard base % of the topology of [], ., Ha consists
of sets of the form [, < Ua, where U, = H, for all but finitely many
a < k and U, € A, for the remaining a < k. Clearly, |%4| < k; since
w(G) = K, it follows that || = k. Let us index the elements of % by
ordinals: # = {B, : a < k}. For each a < k, we set P, = B,NY.

Lemma 4.2. For any M C Y, there exists a countable set C' C Kk such
that M = U, cc Pa-

Proof. Let M C Y. There exists a continuous function f: ], _. Hy —
R such that M = f~1(R\{0})NY. It is well known that any real-valued
continuous function on a product of separable spaces depends on only
countably many coordinates (see, e.g., [11]). This means that there
exists a countable set A C x and a continuous function g: ], ., Ha —
R for which f = g oma (we use the standard notation 74 for the
projection [[ ., Ho — [[,c4 Ha). Thus,

SR\ =g ®\{0}) x [] Ha
acr\A

The open set g~' (R\{0}) in the countable product [] ., H, is a count-
able union of elements of the standard base of this product. Clearly,
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if U is any such element, then U x Haeﬁ\ 4 Hqy is an element of the
standard base for the product [] .. Ha, ie., U = B, for some o < k.
This immediately implies the required assertion. O

In what follows, we identify Y with k; this can be done, e.g., by
means of the bijection y, — a.

Thus, if G is not pseudo-k-compact, then there must exist sets P, C
k, a < K, such that any A C k is the union of fewer than x of them.
Our goal is to show that this is impossible.

Lemma 4.3. Suppose that sets P, C k, a < Kk, are such that, for every
a < K, there exist ordinals © and y and a set M C [x,y] satisfying the
following conditions:

i) a<z<y<ek;
(ii) for any C C a,

M # | Psnizyl.

geC

Then there exists a set M C k which is not the union of fewer than k
sets P,.

Proof. We recursively define ordinals z,, ¥, < r and sets M, C [Zq, Yo
so that

(i) B <23 <ys < Ty < Yo whenever f < o < K;
(ii) for any C' C supg., 73 (in particular, for any C' C ),

Ma 7& U Pﬁ N [xaaya]'
geC

The set M = |J,.,, M, is as required. Indeed, suppose that C' C &,
|Cl <k and M = Jzep Ps- Then C' C o for some o < £ (because & is
regular). Clearly, M N [z4,ya| = Ma, whence Mo = Ugce Ps N [%a; Yal-
This contradiction proves what we need. O

It remains to prove the existence of z, y and M satisfying the
conditions in Lemma 4.3. Let a < . If Ug ., Ps C a+ 1, then
we set © = o, y = o+ 2, and M = {a + 1}. Otherwise we set
A={B<a: P\ (a+1)#3}, v=supgesmin(Fs \ (a+1)), r = q,
y=7v+2,and M =+ 1. For each § < «, the intersection Cjs N [z, y]
either is empty or contains an ordinal smaller than + + 1; therefore,
M cannot be represented as a union of such intersections. In view of
Lemmas 4.2 and 4.3 the group G is pseudo-x-compact. 0
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