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WEIRD R-FACTORIZABLE GROUPS

EVGENII REZNICHENKO AND OL’GA SIPACHEVA

Abstract. The problem of the existence of non-pseudo-ℵ1-com-
pact R-factorizable groups is studied. It is proved that any such
group is submetrizable and has weight larger than ω1. Closely re-
lated results concerning the R-factorizability of products of topo-
logical groups and spaces are also obtained (a product X × Y of
topological spaces is said to be R-factorizable if any continuous
function X × Y → R factors through a product of maps from X
and Y to second-countable spaces). In particular, it is proved that
the square G × G of a topological groups G is R-factorizable as
a group if and only if it is R-factorizable as a product of spaces,
in which case G is pseudo-ℵ1-compact. It is also proved that if
the product of a space X and an uncountable discrete space is
R-factorizable, then Xω is heredirarily separable and heredirarily
Lindelöf.

In the middle of the past century Pontryagin proved that any con-
tinuous function on a compact topological group factors through a con-
tinuous homomorphism to a second-countable group (see, e.g., [7, Ex-
ample 37]). This result gave rise to the theory of R-factorizable groups,
which has been fruitfully developed since then.

Definition ([15]). A topological group G is said to be R-factorizable if
any continuous function f : G→ R factors through a homomorphism to
a second-countable group, i.e., there exists a second-countable topologi-
cal groupH, a continuous homomorphism h : G→ H, and a continuous
function g : H → R for which f = g ◦ h.

The notion of an R-factorizable group was explicitly introduced by
Tkachenko [15], who also obtained the first fundamental results. Among
other things he proved that the following topological groups are R-
factorizable:

• any Lindelöf group;
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• any totally bounded group, that is, a group G such that, given
any open neighborhood U of its identity element, there exists a
finite subset A of G for which AU = G (totally bounded groups
are precisely subgroups of compact groups);

• any subgroup of a Lindelöf Σ-group, in particular, any subgroup
of a σ-compact group;

• any dense subgroup of an arbitrary product of Lindelöf Σ-
groups.

In the decades since Tkachenko’s paper [15] was published, the theory
of R-factorizable groups has been extensively developed; it is surveyed
in Chapter 8 of the book [1].
However, many problems concerning R-factorizable groups remain

open. We consider the four questions posed below (see also [15]) to
be the most important of them. Recall that a topological space X is
said to be pseudo-ℵ1-compact if any locally finite (or, equivalently, any
discrete) family of open sets in X is at most countable.

Question 1. Is any R-factorizable group pseudo-ℵ1-compact?

Question 2. Is the image of an R-factorizable group under a contin-
uous homomorphism R-factorizable?

Note that Question 2 is equivalent to the question of whether the
image of an R-factorizable group under a continuous isomorphism R-
factorizable, because the quotients of R-factorizable groups are R-
factorizable [1, Theorem 8.4.2].

Question 3. Is the square of an R-factorizable group R-factorizable?

Question 4. Is the property of being R-factorizable topological in the
class of topological groups? In other words, is any topological group
homeomorphic to an R-factorizable one R-factorizable?

If H is a topological group and D is a discrete uncountable topolog-
ical group, then the group H × D is not R-factorizable, because it is
not ω-narrow. Thus, the following question is of interest in relation to
Question 4.

Question 4′. Is it true that no R-factorizable group is homeomorphic
to a product H × D, where H is a topological group and D is an
uncountable discrete space?

The first question is most intriguing, at least because if the answer
to it is negative, then so are the answers to Questions 2 and 3. We
prove in this paper that the above questions are related as shown in
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the following diagram. An arrow A → B means that if the answer to
Question A is positive, then so is the answer to Question B.

2 1 3

4′ 4

According to Theorem 8.5.2 of [1], a topological group G is R-
factorizable and pseudo-ℵ1-compact if and only if it is m-factorizable,
that is, any continuous map f : G→M to any metrizable spaceM fac-
tors through a continuous homomorphism to a second-countable topo-
logical group. A class of m-factorizable groups is very important; see
Section 8.5 of [1]. Question 1 can be formulated as follows: Is any
R-factorizable group m-factorizable?

As the question of the existence of non-pseudo-ℵ1-compact R-factorizable
groups is so important, we give these groups a name.

Definition. An R-factorizable group which is not pseudo-ℵ1-compact
is called a weird R-factorizable group.

Yet another way to state Question 1 is: Is it true that weird R-
factorizable groups do not exist?

Weird R-factorizable groups have rather abnormal properties. In
this paper we obtain results which imply the following theorem.

Theorem A. Let G be a weird R-factorizable group. Then

(1) G×G is not R-factorizable;
(2) there exists a surjective continuous homomorphism of G to a

non-R-factorizable group;
(3) w(G) > ω1;
(4) w(G)ω ≥ 2ω1;
(5) ψ(G) ≤ ω, that is, G is submetrizable;
(6) if H is a topological group and the group G×H is R-factorizable,

then
(a) Hω is hereditarily Lindelöf and hereditarily separable;
(b) if w(H) ≤ ω1, then H is second-countable;
(c) under CH, H is second-countable.

Assertion (1) follows from Exercise 8.5.a in [1] (see also Corollary 4.1
in the present paper), and assertion (4) follows from Theorem 8.5.8
in [1]. The other assertions of the theorem are new; their proofs are
given in Section 4.

It is seen from Theorem A that the problem of the existence of
weird R-factorizable groups is closely related to the R-factorizability
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of products of groups. Only recently has the fundamental question of
the multiplicativity of the class of R-factorizable groups been answered
by constructing Lindelöf (and hence R-factorizable) groups G and H
whose product G × H is not R-factorizable [8, 13]1; moreover, one of
these groups can be made second-countable. Section 3 of the present
paper is devoted to R-factorizable products of groups.

The key role in the study of R-factorizable products of groups is
played by the notion of an R-factorizable product of spaces.

Definition ([10, 8]). Given topological spaces X1, . . . , Xn and Y , we
say that a map f : X1 × · · · × Xn → Y is R-factorizable if it factors
through a product of continuous maps to second-countable spaces, that
is, if there exist second-countable spaces X ′

1, . . . , X
′
n and continuous

maps gi : Xi → X ′
i, i ≤ n, and h : X ′

1 × · · · × X ′
n → Y such that

f = h ◦ (g1 × · · · × gn), i.e., the following diagram is commutative:

X1 × · · · ×Xn Y

X ′
1 × · · · ×X ′

n

f

g1×···×gn h

We say that a productX1×· · ·×Xn is R-factorizable (ormultiplicatively
R-factorizable, when there is a danger of confusion) if any continuous
function f : X1 × · · · ×X1 → R is R-factorizable.

The notion of an R-factorizable map was introduced in [10], where
it was essentially proved that, for the free topological group F (S) of
the Sorgenfrey line S, the product F (S)×F (S) is not multiplicatively
R-factorizable. In turn, the notion of a multiplicatively R-factorizable
product was introduced in [8]; in the same paper, the following state-
ment was proved, which is the main tool for constructing topological
groups whose products are not R-factorizable (as groups).

Theorem B ([8, Corollary 2(2)]). If the product G×H of topological
groups G and H is an R-factorizable group, then G×H is a multiplica-
tively R-factorizable product.

In this paper, we refine Theorem B as follows (see Theorem 3.1 in
Section 3).

Theorem C. For topological groups G and H, the following conditions
are equivalent:

(1) the group G×H is R-factorizable;
1As shown in [8], the products of Lindelöf groups constructed in [14, 12] are not

R-factorizable either.
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(2) G and H are R-factorizable and the product G × H is multi-
plicatively R-factorizable.

In [9] the notion of R-factorizability was extended from the class
of topological groups to the much larger class of topological universal
algebras. Results of [9] have enabled us to prove the following statement
(see Theorem 3.2 below).

Theorem D. Let G be a topological group. Then the group G × G
is R-factorizable if and only if the product G × G is multiplicatively
R-factorizable.

Corollary. Given a topological group G, the R-factorizability of the
group G×G is a topological property of G. In other words, if the group
G×G is R-factorizable and H is a topological group homeomorphic to
G, then the group H ×H is R-factorizable.

This corollary shows why a positive answer to Question 3 gives a
positive answer to Question 4.

In [3] Blair and Hager considered conditions under which a product
X × Y is z-embedded in βX × βY . We will show in Section 2, which
is devoted to multiplicatively R-factorizable products, that a product
X × Y has this property if and only if it is R-factorizable (see Propo-
sition 2.1). In the same section we also prove the following statement
(this is Theorem 2.1).

Theorem E. Suppose that a product X × Y is R-factorizable and Y
is not pseudo-ℵ1-compact. Then

(1) Xω is hereditarily Lindelöf and hereditarily separable;
(2) if w(X) ≤ ω1, then X is second-countable;
(3) under CH, X is second-countable.

This theorem strengthens Proposition 2.1(b) of [3].
The CH assumption cannot be omitted from (3), because it has

recently been shown by the authors jointly with Anton Lipin that if
b > ω1, then the product of the countable Fréchet–Urysohn fan and a
discrete space of cardinality ω1 is R-factorizable.

1. Preliminaries

All topological spaces and groups considered in this paper are as-
sumed to be Tychonoff. Throughout the paper, by a space we mean
a topological space and use I to denote an arbitrary index set. Given
ordinals α and β, by [α, β] we denote the set of all ordinals γ satisfy-
ing the inequalities α ≤ γ ≤ β. The weight of a space X is denoted
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by w(X) and its pseudocharacter (that is, the least cardinal κ such
that every point of X is the intersection of at most κ-many neighbor-
hoods), by ψ(X). By a Lindelöf Σ-group we mean a topological group
whose underlying topological space is a Lindelöf Σ-space, that is, can
be represented as a continuous image of a perfect preimage of a second-
countable space. A topological space X is said to be perfectly κ-normal
if the closure of any open set in X is a zero set.

Definition 1.1. Given a cardinal κ, a topological space X is said to
be pseudo-κ-compact if the cardinality of any locally finite family of
open sets in X is less than κ.

Remark 1.1. It is easy to see that a Tychonoff space X is pseudo-κ-
compact if and only if the cardinality of any discrete family of cozero
sets in X is less than κ.

Indeed, suppose that there exists a locally finite family {Uα : α ∈ κ}
of nonempty open sets in X. Let us show that there exists a discrete
family of cozero sets which has cardinality κ. Choose points xα ∈ X
and cozero sets Vα ⊂ X so that xα ∈ Vα ⊂ Uα and Vα intersects only
finitely many sets Uβ for each α < κ. Let f : κ→ κ be a function such
that Vα ∩ Vβ = ∅ for all β ≥ f(α). Clearly, f is increasing and the
family {Vf(α) : α ∈ κ} is a locally finite disjoint (and hence discrete)
family of cozero sets.

Definition 1.2. A topological group G is said to be ω-narrow if, for
every open neighborhood V of the identity element in G, there exists
a countable set A ⊂ G such that VA = G (or, equivalently, such that
AV = G).

According to [1, Proposition 8.1.3], every R-factorizable group is ω-
narrow.

Definition 1.3. A subspace Y of a topological space X is said to be
z-embedded in X if, for every zero set Z in Y , there exists a zero set F
in X such that F ∩ Y = Z.

Clearly, “zero” in this definition can be replaced by “cozero.” It is
also clear that any z-embedded subspace Z of a z-embedded subspace
Y of a space X is z-embedded in X.
The property of being z-embedded plays a crucial role in the theory

of R-factorizable groups, because an ω-narrow topological group G is
R-factorizable if and only if G is z-embedded in every topological group
that contains G as a topological subgroup [1, Theorem 8.2.7].

Recall that a subspace Y of a space X is C-embedded (C∗-embedded)
in X if any continuous (any bounded continuous) function f : Y → R
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has a continuous extension to X. Obviously, all C- and C∗-embedded
subspaces of X are z-embedded. It is also known that a zero set Y
of X is z-embedded in X if and only if Y is C∗-embedded in X [5,
Corollary 11.7]. On the other hand, any cozero set of X is z-embedded
in X [5, Lemma 11.12].

Remark 1.2. The union of any discrete family of cozero sets in a space
X is z-embedded in X.

Indeed, let U = {Uι : ι ∈ I} be a discrete family of cozero sets, and
let fι : X → [0, 1] witness their being cozero. The function

f =
∑
ι∈I

fι : X → R

is well defined (because U is disjoint) and continuous (because U is
discrete and hence locally finite). Clearly, f−1({0}) = X \

⋃
U . Thus,⋃

U is a cozero set in X; therefore, it is z-embedded.

Remark 1.3. Let U = {Uι : ι ∈ I} be a discrete family of nonempty
cozero sets in a space X, and let yι ∈ Uι for each ι ∈ I. Then the
(discrete) set Y = {yι : ι ∈ I} is C-embedded in X.

Indeed, let fι : X → R be continuous functions witnessing that the
Uι are cozero, and let g : Y → R be any function. The function

f =
∑
ι∈I

g(yι)

fι(yι)
· fι : X → R

is well defined and continuous, and its restriction to Y coincides with g.

Recall that a topological space is submetrizable if it admits a coarser
metrizable topology. In this paper we repeatedly use the following
well-known theorems.

Theorem 1.1 (see, e.g., [1, Theorem 3.3.16]). A topological group is
submetrizable if and only if it has countable pseudocharacter.

Theorem 1.2 ([1, Theorem 8.4.2]). The image of an R-factorizable
group under a quotient (= open) homomorphism is R-factorizable.

2. R-Factorizable Products

Definition 2.1. A cozero rectangle in a product X × Y of topological
spaces X and Y is any set of the form V ×W , where V and W are
cozero sets in X and Y , respectively.

Proposition 2.1. For any spaces X and Y , the following conditions
are equivalent:

(1) X × Y is R-factorizable;
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(2) any cozero set in X×Y is a countable union of cozero rectangles;
(3) X × Y is z-embedded in βX × βY ;
(4) if X is z-embedded in X ′ and Y is z-embedded in Y ′, then X×Y

is z-embedded in X ′ × Y ′;
(5) there exist spaces X ′ and Y ′ such that X ′×Y ′ is R-factorizable

and X × Y is z-embedded in X ′ × Y ′;
(6) there exist spaces X ′ and Y ′ such that X ′ × Y ′ is Lindelöf and

X × Y is z-embedded in X ′ × Y ′.

Proof. First, we prove the implication (1) ⇒ (2). Let U be a cozero
set in X × Y , and let f be a continuous function on X × Y such that
(X × Y ) \ U = f−1({0}). Since X × Y is R-factorizable, it follows
that there exist second-countable spaces M and H, continuous maps
p : X →M and q : Y → H, and a continuous function h : M ×H → R
such that f = h◦(p×q). The preimage h−1(R\{0}) is a cozero set in the
second-countable Tychonoff spaceM×H; hence there exist cozero sets
Vi ⊂ M and Wi ⊂ H, i ∈ ω, such that h−1(R \ {0}) =

⋃
i∈ω(Vi ×Wi).

We have U =
⋃

i∈ω(p
−1(Vi) × q−1(Wi)), and the p−1(Vi) and q−1(Wi)

are cozero sets in X and Y , respectively.
Now we show that (2) ⇒ (1). Let B = {Un : n ∈ ω} be a countable

base of the topology of R, and let f : X × Y → R be a continuous
function. By assumption, for each n ∈ ω,

f−1(Un) =
⋃
i∈ω

(Vn,i ×Wn,i),

where the Vn,i and Wn,i are cozero sets in X and Y , respectively. Let
gn,i : X → R and hn,i : Y → R be continuous functions for which Vn,i =
g−1
n,i (R \ {0}) and Wn,i = h−1

n,i(R \ {0}). We set

g = ∆
n,i∈ω

gn,i : X → Rω×ω and h = ∆
n,i∈ω

hn,i : Y → Rω×ω.

We have

(g × h)−1
(
(g × h)(f−1(Un))

)
= f−1(Un),

because (x, y) /∈ f−1(Un) if and only if

(g × h)
(
(x, y)

)
=

(
(an,i)(n,i)∈ω×ω, (bn,i)(n,i)∈ω×ω

)
,

where an,i · bn,i = 0 for all i ∈ ω. Note that if f
(
(x, y)

)
̸= f

(
(x′, y′)

)
,

then there exists an n ∈ ω for which f
(
(x, y)

)
∈ Un and f

(
(x′, y′)

)
/∈

Un, whence (g × h)
(
(x, y)

)
̸= (g × h)

(
(x′, y′)

)
. Therefore, setting

φ
(
(a, b)

)
= f(x, y), where (x, y) is any point in (g × h)−1

(
{(a, b)}

)
,
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we obtain a well-defined function φ : (g × h)(X × Y ) → R. For each
n ∈ ω,

φ−1(Un) =⋃
i∈ω

{(
(an,i)(n,i)∈ω×ω, (bn,i)(n,i)∈ω×ω

)
∈ (g × h)(X × Y ) : an,i · bn,i ̸= 0

}
.

All these sets are open in (g × h)(X × Y ) and hence φ is continuous.
Clearly, f = φ ◦ (g × h).
The equivalences (2) ⇔ (3) ⇔ (4) follow from Theorem 1.1 of [3].
Let us prove (5) ⇔ (6). Since any cozero set is Fσ, Lindelöfness is

preserved by Fσ subspaces, and any open set in a product of Tychonoff
spaces is a union of cozero rectangles, it follows from (1) ⇔ (2) that
all Lindelöf products are R-factorizable. Therefore, (6) ⇒ (5). To see
that (5) ⇒ (6), it suffices to note that if X ′×Y ′ is R-factorizable, then
X ′ × Y ′ is z-embedded in βX ′ × βY ′ (because (1) ⇒ (3)) and hence
X × Y is z-embedded in βX ′ × βY ′.
The implication (3) ⇒ (6) is obvious. It remains to show that (5) ⇒

(2). Let U be a cozero set in X × Y , and let U ′ be a cozero set in an
R-factorizable product X ′ × Y ′ for which U = U ′ ∩ (X × Y ). Since (2)
holds for X ′ × Y ′, it follows that U ′ =

⋃
n∈ω(Vn ×Wn), where the Vn

and Wn are cozero sets in X ′ and Y ′, respectively. Clearly, the Vn ∩X
and Wn ∩ Y are cozero sets in X and Y . We have

U =
(⋃
n∈ω

(Vn ×Wn)
)
∩ (X × Y ) =

⋃
n∈ω

(
(Vn ×Wn) ∩ (X × Y )

)
=

⋃
n∈ω

(
(Vn ∩X)× (Wn × Y )

)
.

Thus, (2) holds for X × Y . □

The paper [3] studied pairs of spaces X and Y satisfying condition
(3) in Proposition 2.1. According to this proposition, (3) is equivalent
to the R-factorizability of the product X × Y . In what follows, when
referring to [3], we will bear in mind the equivalence (1) ⇔ (3).
Given a cardinal κ, by D(κ) we denote κ with the discrete topology;

thus, D(κ) is a discrete space of cardinality κ.

Proposition 2.2. If a product X×Y of spaces is R-factorizable and Y
contains a discrete family of open sets of cardinality κ, then the product
X ×D(κ) is R-factorizable.

Proof. Let {Uα : α < κ} be a discrete family of nonempty open sets
in Y . We choose yα ∈ Uα for each α < κ and set Q = {yα : α < κ}.
Clearly, Q is homeomorphic to D(κ).



10 EVGENII REZNICHENKO AND OL’GA SIPACHEVA

We claim that X × Q is C-embedded in X × Y . Indeed, let f be a
continuous function on X×Q. For each α < κ, we choose a continuous
function gα : Y → [0, 1] such that gα(Y \Uα) = {0} and gα(yα) = 1 and
define a function hα : X × Y → R by setting hα(x, y) = f(x, yα) · gα(y)
for (x, y) ∈ X×Y . The function h =

∑
α<κ hα is a continuous extension

of f .
Since X × Q is C-embedded in X × Y , it follows that X × Q is z-

embedded in X×Y . According to Proposition 2.1, the product X×Q
is R-factorizable. □

Proposition 2.3. For a space Y and a cardinal κ, the following con-
ditions are equivalent:

(1) X ×D(κ) is R-factorizable;
(2) for any family {Fα : α < κ} of zero sets in X, there exists a

second-countable space M and a continuous map g : X → M
such that Fα = g−1(g(Fα)) and g(Fα) is closed in M for each
α < κ;

(3) every continuous map f : X → Y to a space Y with w(Y ) ≤ κ
factors through a continuous map to a second-countable space.

Proof. Let us prove that (1) ⇒ (2). For each α < κ, we fix a continuous
function fα on X such that f−1

α ({0}) = Fα. The function

f : X ×D(κ) → R, (x, α) 7→ fα(x),

is continuous. Condition (1) implies the existence of second-countable
spaces M and E and continuous maps g : X → M , q : D(κ) → E,
and h : M × E → R for which f = h ◦ (g × q). For each α < κ,
Fα ⊂ g−1(g(Fα)). On the other hand, if x ∈ g−1

(
g(Fα)

)
, then there

exists a y ∈ Fα for which g(y) = g(x) and f
(
(x, α)

)
= h

(
g(x), q(α)

)
=

h
(
g(y), q(α)

)
= f

(
(y, α)

)
= 0, which means that fα(x) = 0 and x ∈

Fα. Thus, Fα = g−1(g(Fα)). Note that, for x ∈ M and α ∈ ω1,
h(x, q(α)) = 0 if and only if there exists a z ∈ X for which g(z) = x and
f(z, α) = 0, i.e., z ∈ Fα and x ∈ g(Fα). Therefore, g(Fα) × {q(α)} =
h−1({0})∩ (M × {q(α)}). This set is closed in M × {q(α)}, and hence
g(Fα) is closed in M .
To prove (2) ⇒ (3), we take a base {Uα : α < κ} of Y consisting

of cozero sets and put Fα = f−1(Y \ Uα) for α < κ. Let M and
g : X → M be as in (2). Note that if x, y ∈ Y and f(x) ̸= f(y), then
g(x) ̸= g(y). Indeed, there exists an α < κ for which f(x) ∈ Uα and
f(y) /∈ Uα, that is, x /∈ Fα and y ∈ Fα. Since g−1(g(Fα)) = Fα, it
follows that g(x) /∈ g(Fα), while g(y) ∈ g(Fα). Therefore, choosing an
arbitrary point z′ ∈ g−1(z) and setting h(z) = f(z′) for every z ∈ Z,
we obtain a well-defined map h : Z → X. It is continuous, because
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h−1(Uα) = M \ g(Fα) and g(Fα) is closed by assumption. Clearly,
f = h ◦ g.

It remains to prove the implication (3) ⇒ (1). Let φ be a continuous
function X × D(κ) → R. For each α ∈ D(κ), we define a function
fα : X → R by fα(x) = φ(x, α) for x ∈ X and set f = ∆α<κ fα : X →
Rκ. Condition (3) implies the existence of a second-countable space M
and continuous maps g : X →M and h : M → Rκ such that f = h ◦ g.
Let πα : Rκ → R denote the projection onto the αth coordinate for
α < κ, and let

ψ : M ×D(κ) → R, (z, α) 7→ πα(h(z)).

The function ψ is continuous, and φ = ψ ◦ (g × idD(κ)). Since M is
second-countable, it follows that the productM×D(κ) is R-factorizable
[3, Theorem 3.2]. Hence there exist second-countable spaces M ′ and S
and continuous maps i : M → M ′, q : D(κ) → S, and ν : M ′ × S → R
for which ψ = ν ◦ (i× q). Let µ = ν ◦ (i× idS). Then µ is a continuous
mapM×S → R and ψ = µ◦ (idM ×q). We have φ = ψ ◦ (g× idD(κ)) =
µ ◦ (idM ×q) ◦ (g × idD(κ)) = µ ◦ (g × q). □

Proposition 2.4. Let κ be a cardinal, and let X be a space with
w(X) ≤ κ. If the product X×D(κ) is R-factorizable, then X is second-
countable.

Proof. Proposition 2.3 implies the existence of a second-countable space
M and continuous maps g : X → M and h : M → X for which idX =
h ◦ g. Obviously, the maps g and h are homeomorphisms. □

Proposition 2.4 strengthens Theorem 3.1 of [3].

Proposition 2.5. If X × D(ω1) is R-factorizable, then so is Xω ×
D(ω1).

To prove this proposition, we need a lemma. Given a map f : X →
Y , by f×ω we denote the product map Xω → Y ω. Let us say that
a subset F of Xω is a strong zero set in Xω if there exists a second-
countable space M and a continuous function f : X →M such that

F = (f×ω)−1
(
f×ω(F )

)
and f×ω(F ) is closed in Mω.

Lemma 2.1. If X×D(ω1) is R-factorizable, then any closed subset of
Xω is a strong zero set.

Proof. Suppose that there exists a closed set F in Xω which is not
a strong zero set. To obtain a contradiction, we will recursively con-
struct second-countable spaces Mβ, continuous maps fβ : X → Mβ,
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and strictly decreasing strong zero sets Fβ for β < ω1 so that

Fβ = (f×ω
β )−1

(
f×ω
β (F )

)
and hence f×ω

β (Fβ) = f×ω
β (F ) (∗)

for each β < ω1. We define M0 to be a singleton and f0 to be the map
X → M0. For F0 we take Xω. Suppose that α > 0 and Mβ, fβ, and
Fβ are defined for all β < α. We set

f ∗
α = ∆

β<α
fβ : X →

∏
β<α

Mβ and F ∗
α = (f ∗

α
×ω)−1

(
f ∗
α
×ω(F )

)
.

From (∗) it follows that F ∗
α ⊂ Fβ for all β < α. The set F ∗

α satisfies
condition (∗) and hence F ∗

α ̸= F , because F is not a strong zero set.
Clearly, F ⊂ F ∗

α. Take

(xn)n<ω ∈ F ∗
α \ F ⊂ Xω.

Since F is closed in Xω, there exists an N < ω and cozero sets Ui ⊂ X,
i ≤ N , such that

(xn)n<ω ∈ U1 × U2 × · · · × UN ×X ×X ×X × · · · ⊂ Xω \ F.

For each n ≤ N , let gn : X → [0, 1] be a continuous function such that
gn(xn) = 0 and gn(X \ Un) ⊂ {1}. We set

Mα = RN×
∏
β<α

Mβ, fα =
(
∆
n≤N

gn
)
∆ f ∗

α, and Fα = (f×ω
α )−1

(
f×ω
α (F )

)
.

Note that (xn)n<ω /∈ Fα. Indeed, for each i ≤ N , the ith coordinate of
f×ω
α

(
(xn)n<ω

)
is((

∆
n≤N

gn
)
∆ f ∗

α

)
(xi) ∈ Ri−1 × {0} × RN−i ×

∏
β<α

Mβ,

while for every
(
(yn)n∈ω

)
∈ F , there exists an i ≤ N for which yi /∈ Ui,

so that the ith coordinate of f×ω
α

(
(yn)n<ω

)
is((

∆
n≤N

gn
)
∆ f ∗

α

)
(yi) ∈ Ri−1 × {1} × RN−i ×

∏
β<α

Mβ,

whence

f×ω
α (F ) ⊂

⋃
i≤N

M i−1
α ×

(
Ri−1 × {1} × RN−i ×

∏
β<α

Mβ

)
×Mα ×Mα × . . .

=
⋃
i≤N

M i−1
α ×

(
Ri−1 × {1} × RN−i ×

∏
β<α

Mβ

)
×Mα ×Mα × . . . .

Thus, Fα ⊊ F ∗
α ⊂ Fβ, β < α.
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Having constructed Mα, fα, and Fα for all α < ω1, we set

Y =
∏
α<ω1

Mα and f = ∆
α<ω1

fα : X → Y.

By Proposition 2.3 (3) there exists a second-countable space M and
continuous maps g : X → M and h : M → Y for which f = h ◦ g. We
have f×ω = h×ω ◦ g×ω. Let

φ : Y ω =
( ∏
α<ω1

Mα

)ω

→
∏
α<ω1

Mω
α

be the obvious homeomorphism permuting factors. Then

(φ ◦ h×ω) ◦ g×ω = φ ◦ f×ω = ∆
α<ω1

f×ω
α : Xω →

∏
α<ω1

Mω
α .

Note that the sets

F ′
β =

∏
γ≤β

f×ω
γ (Fγ)×

∏
β<γ<ω1

Mω
γ , β < ω1,

are closed in
∏

γ<ω1
Mω

γ and Fβ =
(
∆α<ω1 f

×ω
α

)−1
(F ′

β). Since Fβ strictly

decrease, it follows that (φ ◦ h×ω)−1(F ′
β), β < ω1, form a strictly de-

creasing sequence of closed sets in the second-countable space Mω.
The complements to these sets form an uncountable open cover of the
complement to their intersection having no countable subcover, which
cannot exist, because M is hereditarily Lindelöf. This contradiction
proves that any closed subset of Xω is a strong zero set. □

Proof of Proposition 2.5. It suffices to show that Xω satisfies condi-
tion (2) of Proposition 2.3. Let {Fα : α < ω1} be a family of zero
sets in Xω. By virtue of Lemma 2.1, for each α < ω1, there exists a
second-countable space Mα and a continuous map fα : X → Mα for
which

Fα = (f×ω
α )−1

(
f×ω
α (Fα)

)
and f×ω

α (Fα) is closed in Mω
α . (∗∗)

Let Y , f , M , g, h, and φ be defined as in the proof of Lemma 2.1. It
follows from (∗∗) that, for each β < ω1,

Fβ = ( ∆
α<ω1

f×ω
α )−1

(
∆

α<ω1

f×ω
α (Fβ)

)
and ∆

α<ω1

f×ω
α (Fβ) is closed in

∏
α<ω1

Mω
α ,

whence

Fβ = (φ ◦ f×ω)−1
(
(φ ◦ f×ω)(Fβ)

)
and Fβ = (g×ω)−1

(
g×ω(Fβ)

)
,

because ∆α<ω1
f×ω
α = φ ◦ f×ω = (φ ◦ h×ω) ◦ g×ω. From the same

considerations it follows that g×ω(Fβ) = (φ ◦ h×ω)−1
(
∆α<ω1

f×ω
α (Fβ)

)
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and, therefore, g×ω(Fβ) is closed in Xω. Thus, condition (2) of Propo-
sition 2.3 does hold for {Fα : α < ω1} (with Mω and g×ω playing the
roles of M and g). □

Proposition 2.6. If X ×D(ω1) is R-factorizable, then Xω is heredi-
tarily Lindelöf and hereditarily separable.

Proof. In view of Proposition 2.5, it suffices to prove that X is heredi-
tarily Lindelöf and hereditarily separable.

First, we show that X is hereditarily Lindelöf. Suppose it is not.
Then there exists a right separated set in X, i.e., a subspace R = {xα :
α < ω1} ⊂ X in which all initial segments {xβ : β < α}, α < ω1, are
open [6]. For each β < ω1, let Uβ be a cozero neighborhood of xβ in X
such that Uα∩R ⊂ {xγ : γ < β+1}. Then the sets Fα = X \

⋃
β<α Uβ,

α < ω1, are zero sets in X, and they strictly decrease, because α ∈
Fα \ Fα+1 for each α < ω1. Proposition 2.4 implies the existence of a
second-countable spaceM and a continuous map g : X →M such that
Fα = g−1(g(Fα)) and g(Fα) is closed in M for each α < ω1. Therefore,(
g(Fα)

)
α<ω1

is a strictly decreasing ω1-sequence of closed sets in the

second-countable spaceM and {M \g(Fα) : α < ω1} is an uncountable
open cover ofM \

⋃
α<ω1

g(Fα) containing no countable subcover, which
cannot exist, because M is hereditarily Lindelöf.

Thus, X is hereditarily Lindelöf and, therefore, perfectly normal.
Let us prove thatX is hereditarily separable. Suppose it is not. Then

there exists a left separated set in X, i.e., a set L = {xα : α < ω1} ⊂ X
such that {xβ : β < α} is closed in L for each α < ω1 [6]. Clearly, the

closed subsets Fα = {xβ : β < α} of X strictly increase. They are zero
sets, becauseX is perfectly normal. According to Proposition 2.4, there
exists a second-countable space M and a continuous map g : X → M
such that Fα = g−1(g(Fα)) and g(Fα) is closed in M for each α < ω1.
Thus,

(
g(Fα)

)
α<ω1

is a strictly increasing ω1-sequence of closed subsets

of M and M ′ =
⋃

α<ω1
g(Fα) is a nonseparable subspace of M , because

any countable subset ofM ′ is contained in g(Fα) for some α < ω. Such
an M ′ cannot exists, since M is hereditarily separable. □

As is known, any space X whose square is hereditarily Lindelöf is
submetrizable (see, e.g., [4, Lemma 8.2]). This implies the following
assertion.

Corollary 2.1. Any space X for which X ×D(ω1) is R-factorizable is
submetrizable.

Proposition 2.7. Any space X for which the product X × D(2ω) is
R-factorizable is second-countable.
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Proof. It follows from Proposition 2.6 that X is separable. Therefore,
w(X) ≤ 2ω and X is second-countable by Proposition 2.4. □

Corollary 2.2 (CH). Any space X for which the product X ×D(ω1)
is R-factorizable is second-countable.

As mentioned in the introduction, the CH assumption cannot be
omitted, because if b > ω1, then the product of the countable Fréchet–
Urysohn fan and D(ω1) is R-factorizable.

Theorem 2.1. If a product X × Y of spaces is R-factorizable and Y
is not pseudo-ℵ1-compact, then

(1) Xω is hereditarily Lindelöf and hereditarily separable;
(2) if w(X) ≤ ω1, then X is second-countable;
(3) under CH, X is second-countable.

Proof. It follows from Proposition 2.2 that X×D(ω1) is R-factorizable.
Hence Propositions 2.6 and 2.4 imply (1) and (2) and Corollary 2.2
implies (3). □

3. R-Factorizable Products of Topological Groups

Theorem 3.1. For topological groups G and H, the following condi-
tions are equivalent:

(1) G×H is an R-factorizable group;
(2) the groups G and H are R-factorizable and the product G×H

is multiplicatively R-factorizable.

Proof. First, we show that (1) ⇒ (2). The projections ofG×H onto the
factors are open homomorphisms; hence by Theorem 1.2 the groups G
and H are R-factorizable. According to Theorem B, the product G×H
is multiplicatively R-factorizable.

Let us prove that (2) ⇒ (1). The group G is ω-narrow, being R-
factorizable [1, Proposition 8.1.3]. According to a theorem of Guran
(see [1, Theorem 3.4.23]), G is a topological subgroup of a product G′

of second-countable topological groups. Since G is R-factorizable, it
follows that G is z-embedded in G′ [1, Theorem 8.2.7]. Similarly, H
is z-embedded in a product H ′ of second-countable topological groups.
Hence G × H is z-embedded in G′ × H ′ by Proposition 2.1. Since
G′×H ′ is a product second-countable topological groups, it follows by
Theorem 8.1.14 of [1] thatG′×H ′ is an R-factorizable group. According
to [1, Theorem 8.2.7], the group G×H is R-factorizable, because it is
z-embedded in the R-factorizable group G′ ×H ′. □
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Proposition 3.1. If a product G×H of topological groups is multiplica-
tively R-factorizable, then either both groups G and H are ω-narrow or
one of them is R-factorizable.
Proof. Theorem 2.1 implies that either both groupsG andH are pseudo-
ℵ1-compact or one of them is Lindelöf. It remains to recall that
any pseudo-ℵ1-compact group is ω-narrow [1, 3.4.31] and any Lindelöf
group is R-factorizable [1, 8.1.6]. □

Question 5. Is it true that if a product G ×H of topological groups
is multiplicatively R-factorizable, then one of the groups G and H is
R-factorizable?

When the product G × H is a square, the answer to this question
is positive even in the much more general case of topological universal
algebras.

Recall that an n-ary operation on a set X is any map from Xn to X.
A universal algebra is a nonempty set X together with a set of opera-
tions on X. If X is endowed with a topology and all of these operations
are continuous, then X is called a topological universal algebra. The
operations are indexed by the elements of a set Σ of symbols of oper-
ations. This set Σ, together with a map ν : Σ → ω assigning arity to
each σ ∈ Σ, is called a signature. A universal algebra with a signature
Σ is called a Σ-algebra. For σ ∈ Σ, the operation on a Σ-algebra with
index σ is usually denoted by the same symbol σ. Groups are univer-
sal algebras with signature Σgr = {e, −1, ·}, where e is the symbol of
a nullary operation (which is identified with the identity element of a
group), −1 is the symbol of a unary operation (inversion), and · is the
symbol of a binary operation (multiplication). Topological groups are
topological Σgr-algebras.
Let Σ be a signature. A map φ : X → Y of Σ-algebras is called a ho-

momorphism if, for any n ∈ ω, any symbol σ ∈ Σ of an n-ary operation,
and any x1, x2, . . . , xn ∈ X, φ(σ(x1, x2, . . . , xn)) = σ(φ(x1), φ(x2), . . . , φ(xn)).

Definition 3.1 ([9]). Let Σ be a signature. A topological Σ-algebra X
is said to be R-factorizable if, given any continuous function f : X → R,
there exists a second-countable topological Σ-algebra Y , a continuous
homomorphism g : X → Y , and a continuous function h : Y → R such
that f = h ◦ g.

Formally, Definition 3.1 as applied to a topological group treated as
a universal algebra differs from the definition of the R-factorizability
of topological groups, because Definition 3.1 does not require Y to be
a topological group, it only requires it to be a topological Σgr-algebra,
that is, a set with a nullary operation e, a unary operation −1, and a
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binary operation · on which no constraints (like associativity of mul-
tiplication and the familiar properties of e and −1) are imposed. But
in fact these definitions coincide, because it is easy to see that any
homomorphic image of a group is a group and, therefore, Y is a topo-
logical group. Similar considerations apply to topological semigroups
and paratopological groups.

The most studied and interesting case is that of universal algebras
with finite signature. In [9] the general case was considered, in which
the signature has arbitrary cardinality and is endowed with a topology.
In what follows, we consider universal algebras with finite signature, in
which case the signature is a finite discrete space.

In [9] the notion of an R-factorizable product Xn over a signature Σ
was introduced. In the case of a finite discrete signature, this notion
coincides with that of a multiplicatively R-factorizable product Xn.
The following proposition follows from Theorem 12 in [9].

Proposition 3.2. Let X be a topological Σ-algebra with finite signa-
ture Σ such that the arities of all operations σ ∈ Σ do not exceed n.
If the product Xn is multiplicatively R-factorizable, then X is an R-
factorizable topological Σ-algebra.

Corollary 3.1. If the square G×G of a topological group G is multi-
plicatively R-factorizable, then the group G is R-factorizable.

Theorem 3.2. Let G be a topological group. The product G × G is
multiplicatively R-factorizable if and only if the group G × G is R-
factorizable.

Proof. Suppose that the productG×G is multiplicatively R-factorizable.
Then the group G is R-factorizable by Corollary 3.1. According to The-
orem 3.1, the group G×G is R-factorizable as well.

Conversely, if the group G × G is R-factorizable, then the product
G×G is multiplicatively R-factorizable by Theorem B. □

Corollary 3.2. Let G be a topological group homeomorphic to a dense
subspace of a product X of Lindelöf Σ-groups. Then Gκ is R-factorizable
for any cardinal κ.

Proof. According to Theorem 8.4.6 of [1], any product of Lindelöf Σ-
groups, in particular Xκ ×Xκ, is perfectly κ-normal. Since Gκ × Gκ

is homeomorphic to a dense subspace of Xκ ×Xκ, it follows by Theo-
rem 5.1 of [2] that Gκ×Gκ is z-embedded in Xκ×Xκ. By Theorem 3.2
Xκ×Xκ is multiplicatively R-factorizable, because any product of Lin-
delöf Σ-groups is R-factorizable [1, Theorem 8.1.14]. Therefore, so is
Gκ ×Gκ. It remains to apply Corollary 3.1. □
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Proposition 3.2 implies also the following statements.

Corollary 3.3. Let G be a topological semigroup. If the product G×G
is multiplicatively R-factorizable, then the semigroup G is R-factorizable.

Recall that a paratopological group is a group with a topology with re-
spect to which multiplication is continuous. We say that a paratopolog-
ical group is R-factorizable if, given any continuous function f : G→ R,
there exists a second-countable paratopological group H, a continuous
homomorphism h : G → H, and a continuous function g : H → R for
which f = g ◦ h.

Corollary 3.4. Let G be a paratopological group. If the product G×G
is multiplicatively R-factorizable, then G is R-factorizable.

Proof. Let f : G→ R be a continuous function. Since G is a topological
semigroup, by Corollary 3.3 there exists a second-countable topological
semigroup H, a continuous homomorphism h : G → H, and a contin-
uous function g : H → R for which f = g ◦ h. We can assume that
h is surjective. Since h(x · y) = h(x) · h(y), it follows that, for any
y ∈ H and any x ∈ h−1(y), we have h(x−1) · y = y · h(x−1) = h(e) and
h(e) · y = y · h(e) = y. Therefore, H is a group with identity element
h(e) and inversion h(x)−1 = h(x−1) (recall that h is a surjection). Thus,
H is a paratopological group and h is a group homomorphism. □

Corollary 3.5. Let G be a paratopological group. If the product G×G
is Lindelöf, then the paratopological group G is R-factorizable.

Proof. By Proposition 2.1 (6) G×G is multiplicatively R-factorizable,
and by Corollary 3.4 G is R-factorizable. □

Corollary 3.6. If G is a topological group such that the group G×G is
R-factorizable and a topological group H is homeomorphic to G, then
the group H ×H is R-factorizable.

Proof. If the product G × G is productively R-factorizable, then the
group G × G is R-factorizable by Theorem 3.2. The group G is the
image of G×G under the natural projection homomorphism, which is
continuous and open. Therefore, G is R-factorizable by Theorem 1.2.

□

4. Weird R-Factorizable Groups

Theorems 2.1 and 3.1 have the following immediate consequence.

Theorem 4.1. If G is a weird R-factorizable group, H is a topological
group, and the group G×H is R-factorizable, then
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(1) Hω is hereditarily Lindelöf and hereditarily separable;
(2) if w(H) ≤ ω1, then H is second-countable;
(3) under CH, H is second-countable.

4.1. Squares of R-Factorizable Groups. Theorems 3.2 and 2.1 im-
ply the following statement.

Theorem 4.2. If G is a topological group and the group G × G is
R-factorizable, then G is pseudo-ℵ1-compact.

Indeed, by Theorem 3.2 G×G is multiplicatively R-factorizable and
by Theorem 2.1 if G is not pseudo-ℵ1-compact, then it must be hered-
itarily Lindelöf, which is impossible.

Corollary 4.1. The square of a weird R-factorizable group is never
R-factorizable.

4.2. R-Factorizable Groups of Uncountable Pseudocharacter.

Theorem 4.3. Any R-factorizable group of uncountable pseudochar-
acter is pseudo-ℵ1-compact.

Corollary 4.2. Any weird R-factorizable group has countable pseu-
docharacter, i.e., is submetrizable.

The proof of Theorem 4.3 is based on the following lemma.

Lemma 4.1. Suppose given a discrete family {Uα : α < ω1} of cozero
sets in a topological group G and nonempty zero sets Fα ⊂ Uα, α <
ω1. Then there exists a second-countable group H and a continuous
homomorphism h : G→ H such that h(Fα) is closed and h−1(h(Fα)) =
Fα for each α < ω1.

Proof. First, we choose sets Qn ⊂ ω1, n ∈ ω, so that, for every α ∈ ω1,⋂
{Qn : α ∈ Qn} = {α}.

As such sets we can take any countable base of any second-countable
topology on ω1. Let

Sn =
⋃

{Fα : α ∈ Qn}, n ∈ ω.

Since all Fα are pairwise disjoint, it follows that, for each α < ω1,
Fα ∩ Sn /∈ ∅ if and only if α ∈ Qn, in which case Fα ⊂ Sn. Moreover,
if β ̸= α, then there exists an n ∈ ω such that α ∈ Qn and β /∈ Qn,
that is, Fα ⊂ Sn and Fβ ∩ Sn = ∅. Therefore,

Fα =
⋂

{Sn : α ∈ Qn}.
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For each α < ω1, we fix a continuous function fα : G→ R such that
f−1
α (R \ {0}) = Uα and f−1

α (1) = Fα. We set

φn =
∑
α∈Qn

fα : G→ R, n ∈ ω.

Every function φn is well defined and continuous, because the fam-
ily {Uα : α ∈ Qn} is discrete; hence there exists a second-countable
group Hn, a continuous homomorphism hn : G → Hn, and a con-
tinuous function gn : Hn → R for which φn = gn ◦ hn. Note that
Sn = φ−1

n ({1}) = h−1
n (g−1

n ({1})).
We set

h = ∆
n∈ω

hn : G→
∏
n∈ω

Hn and H = h(G).

Since Fα =
⋂
{Sn : α ∈ Qn}, it follows that x ∈ Fα if and only if

hn(x) ∈ g−1
n (1) whenever α ∈ Qn. Thus,

Fα = h−1
(
{(xn)n∈ω ∈ H : xn ∈ g−1

n (1) for all n ∈ ω such that α ∈ Qn}
)
.

It follows from the continuity and surjectivity of h that h(Fα) is closed
in H and h−1(h(Fα)) = Fα. □

Proof of Theorem 4.3. Let G be an R-factorizable group of uncount-
able pseudocharacter with identity element e. Suppose that G is not
pseudo-ℵ1-compact and let {Uα : α < ω1} be a discrete family of
nonempty cozero sets. For each α < ω1, we choose xα ∈ Uα and a zero
set Zα ⊂ Uα so that

(i) e ∈ Zα ⊂ x−1
α · Uα;

(ii) Zα ⊂ Zβ and Zα ̸= Zβ if β < α.

This can easily be done by transfinite recursion as follows. For Z0 we
take any zero set containing e and contained in x−1

0 ·U0. Assuming that
α > 0 and Zβ are defined for β < α, we choose any zero set F ′

α ⊂ Uα

containing x−1
α and put Z ′

α = (x−1
α · F ′

α) ∩
⋂

β<α Zβ. Since Z ′
α is a Gδ-

set and the pseudocharacter of G is uncountable, it follows that there
exists an x ∈ Z ′

α \ {e}; for Zα we take the intersection of Z ′
α with any

zero set containing e and not containing x.
Let Fα = xα · Zα for α < ω1. Then the sets Uα and Fα satisfy

the assumptions of Lemma 4.1. Hence there exists a second-countable
group H and a continuous homomorphism h : G→ H such that

(i) all h(Fα) are closed and hence so are all

h(Zα) = h(x−1
α · Fα) = h(x−1

α ) · h(Fα);

(ii) h−1(h(Fα)) = Fα.
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Let N be the kernel of h. Then Fα = N · Fα and

h−1(h(Zα)) = h−1(x−1
α · Fα) = N · x−1

α · Fα = x−1
α · Fα = Zα.

Therefore, h(Zα) ̸= h(Zβ) for α ̸= β.
Thus, the subsets h(Zα), α < ω1, of H are closed and strictly de-

crease. Their complements form an uncountable open cover containing
no countable subcover in the second-countable space H \

⋂
α<ω1

h(Zα).
This contradiction shows that the family {Uα : α < ω1} cannot exist
and G is pseudo-ℵ1-compact. □

Corollary 4.3. If G and H are topological groups at least one of
which is of uncountable pseudocharacter and the group G × H is R-
factorizable, then both G and H are R-factorizable and pseudo-ℵ1-
compact.

Proof. According to Theorem 4.3, the group G × H is pseudo-ℵ1-
compact; hence so are its images G and H under continuous open pro-
jection homomorphisms. By Theorem 1.2 they are also R-factorizable.

□

It follows from Theorem 1.1 that every nonmetrizable compact group
has uncountable pseudocharacter, because compact spaces do not ad-
mit strictly coarser Hausdorff topologies. Therefore, Corollary 4.3 im-
plies the following theorem of [1].

Corollary 4.4 ([1, Theorem 8.5.11]). If G is a topological group, H
is a nonmetrizable compact topological group, and the group G ×H is
R-factorizable, then G is pseudo-ℵ1-compact.

Corollary 4.5. If an R-factorizable group G contains a nonmetrizable
compact subspace, then G is pseudo-ℵ1-compact.

Proof. Let K be a compact subspace of G. If G is not pseudo-ℵ1-
compact, then by Corollary 4.2 it is submetrizable and hence so is K.
Since compact spaces do not admit strictly coarser Hausdorff topolo-
gies, it follows that K is metrizable. □

4.3. R-Factorizable Groups of Regular Uncountable Weight.
It follows from Theorems 8.5.2 and 8.5.8 of [1] that any R-factorizable
group G with w(G)ω < 2ω1 is pseudo-ℵ1-compact. Therefore, under the
assumption 2ω < 2ω1 , any R-factorizable group of weight ω1 is pseudo-
ℵ1-compact. In this section, we show that this assumption can be
removed. Moreover, we prove that any R-factorizable group of regular
uncountable weight κ is pseudo-κ-compact.

We begin with a simple observation.
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Remark 4.1. Any R-factorizable group G of weight κ embeds in a prod-
uct of κ-many second-countable groups as a subgroup.

Indeed, since G is Tychonoff, its topology has a base {Bα : α < κ}
consisting of cozero sets. Continuous functions fα : G → R witnessing
that the Bα are cozero separate points from closed sets, and each fα
factors through a continuous homomorphism hα : G→ Hα to a second-
countable group Hα. Clearly, the homomorphisms hα separate points
from closed sets as well, so that the diagonal ∆α<κ hα : G→

∏
α<κHα

is a topological isomorphic embedding.

Theorem 4.4. Any R-factorizable group of regular uncountable weight
κ is pseudo-κ-compact.

Corollary 4.6. If G is a weird R-factorizable group, then w(G) > ω1.

Proof of Theorem 4.4. Suppose that κ is a regular uncountable cardi-
nal and an R-factorizable group G of weight κ is not pseudo-κ-compact,
i.e., contains a discrete family {Uα : α < κ} of nonempty cozero sets.
Take yα ∈ Uα for each α ∈ κ and let Y = {yα : α < κ}. The set
Y is C-embedded in G (by Remark 1.3) and G is z-embedded in a
product

∏
α<κHα of second-countable groups Hα (by Remark 4.1 and

Theorem 8.2.7 of [1]); hence every set P ⊂ Y is cozero in
∏

α<κHα

(because any such set is cozero in the discrete space Y ).
Choose a countable base Bα of the topology of Hα for each α < κ.

Recall that the standard base B of the topology of
∏

α<κHα consists
of sets of the form

∏
α<κ Uα, where Uα = Hα for all but finitely many

α < κ and Uα ∈ Bα for the remaining α < κ. Clearly, |B| ≤ κ; since
w(G) = κ, it follows that |B| = κ. Let us index the elements of B by
ordinals: B = {Bα : α < κ}. For each α < κ, we set Pα = Bα ∩ Y .

Lemma 4.2. For any M ⊂ Y , there exists a countable set C ⊂ κ such
that M =

⋃
α∈C Pα.

Proof. LetM ⊂ Y . There exists a continuous function f :
∏

α<κHα →
R such thatM = f−1(R\{0})∩Y . It is well known that any real-valued
continuous function on a product of separable spaces depends on only
countably many coordinates (see, e.g., [11]). This means that there
exists a countable set A ⊂ κ and a continuous function g :

∏
α∈AHα →

R for which f = g ◦ πA (we use the standard notation πA for the
projection

∏
α∈κHα →

∏
α∈AHα). Thus,

f−1(R \ {0}) = g−1(R \ {0})×
∏

α∈κ\A

Hα.

The open set g−1(R\{0}) in the countable product
∏

α∈AHα is a count-
able union of elements of the standard base of this product. Clearly,
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if U is any such element, then U ×
∏

α∈κ\AHα is an element of the

standard base for the product
∏

α∈κHα, i.e., U = Bα for some α < κ.
This immediately implies the required assertion. □

In what follows, we identify Y with κ; this can be done, e.g., by
means of the bijection yα 7→ α.

Thus, if G is not pseudo-κ-compact, then there must exist sets Pα ⊂
κ, α < κ, such that any A ⊂ κ is the union of fewer than κ of them.
Our goal is to show that this is impossible.

Lemma 4.3. Suppose that sets Pα ⊂ κ, α < κ, are such that, for every
α < κ, there exist ordinals x and y and a set M ⊂ [x, y] satisfying the
following conditions:

(i) α < x < y < κ;
(ii) for any C ⊂ α,

M ̸=
⋃
β∈C

Pβ ∩ [x, y].

Then there exists a set M ⊂ κ which is not the union of fewer than κ
sets Pα.

Proof. We recursively define ordinals xα, yα < κ and setsMα ⊂ [xα, yα]
so that

(i) β < xβ < yβ < xα < yα whenever β < α < κ;
(ii) for any C ⊂ supβ<α xβ (in particular, for any C ⊂ α),

Mα ̸=
⋃
β∈C

Pβ ∩ [xα, yα].

The set M =
⋃

α<κMα is as required. Indeed, suppose that C ⊂ κ,
|C| < κ and M =

⋃
β∈C Pβ. Then C ⊂ α for some α < κ (because κ is

regular). Clearly, M ∩ [xα, yα] =Mα, whence Mα =
⋃

β∈C Pβ ∩ [xα, yα].
This contradiction proves what we need. □

It remains to prove the existence of x, y and M satisfying the
conditions in Lemma 4.3. Let α < κ. If

⋃
β<α Pβ ⊂ α + 1, then

we set x = α, y = α + 2, and M = {α + 1}. Otherwise we set
A = {β < α : Pβ \ (α+ 1) ̸= ∅}, γ = supβ∈Amin(Pβ \ (α+ 1)), x = α,
y = γ + 2, and M = γ + 1. For each β < α, the intersection Cβ ∩ [x, y]
either is empty or contains an ordinal smaller than γ + 1; therefore,
M cannot be represented as a union of such intersections. In view of
Lemmas 4.2 and 4.3 the group G is pseudo-κ-compact. □
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