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Lindelöf to any finite power.
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Definition 1 ([1]). A topological group G is said to be R-factorizable if, for every continuous function 
f : G → R, there exists a continuous homomorphism h : G → H to a second-countable topological group H
and a continuous function g : H → R such that f = g ◦ h.

The study of R-factorizable groups goes back to the work of Pontryagin, who proved the R-factorizability 
of compact groups [2, Example 37] (see also [3, Theorem 8.1.1]), although the notion was explicitly intro
duced only as late as 1991 by Tkachenko in [1]. In the same paper Tkachenko asked whether or not the 
R-factorizability of groups is preserved by finite products [1, Problem 4.1]; versions of this question (some 
of which still remain unanswered) can be found in [3].

The first examples of R-factorizable groups G and H for which G×H is not R-factorizable were given 
by this author [4] and, independently, Reznichenko [5]. All these examples were Lindelöf and had some 
additional properties (for example, Reznichenko constructed a pair of Lindelöf groups whose product was 
not pseudo-ℵ1-compact and another pair of Lindelöf groups whose product was separable and contained a 
closed discrete subspace of cardinality 2ω). In this paper, we construct two zero-dimensional R-factorizable 
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groups G1 and G2 such that G2 is second-countable, Gn
1 is Lindelöf for any positive integer n, and G1 ×G2

is not R-factorizable, thereby solving Problems 8.5.2, 8.5.4, and 8.5.6 and one half of Problem 8.5.5 in [3] 
(the last problem is whether the product of an R-factorizable group and (a subgroup of) a σ-compact group 
is R-factorizable).

We use R for the set of real numbers, N for the set of positive integers, and ω for the set of nonnegative 
integers. By ⊕ we denote the topological sum of spaces and by |A|, the cardinality of a set A. The definitions 
of the covering dimensions dim and dim0 can be found in [6]. A topological space X is zero-dimensional if 
it has a base consisting of clopen sets and strongly zero-dimensional if any finite cover of X by cozero sets 
has a disjoint finite refinement (that is, dim0(X) = 0). A subset Y of a space X is said to be C-embedded 
in X if any real-valued continuous function on Y has a continuous extension to X, and Y is z-embedded in 
X if every zero set of Y is the trace on Y of some zero set of X. A space X is submetrizable if its topology 
contains a metrizable one.

The main result of this paper is the following theorem.

Theorem. There exist Boolean (and hence Abelian) Hausdorff topological groups G1 and G2 with the follow
ing properties:

(i) G1 and G2 are R-factorizable and zero-dimensional;
(ii) G1 is submetrizable, and Gn

1 is Lindelöf for any n ∈ N;
(iii) G2 is second-countable;
(iv) G1 ×G2 is not R-factorizable.

Our construction of the groups G1 and G2 is based on Przymusiński’s notion of n-cardinality [7] and 
on his construction of Lindelöf spaces X and Y such that X × Y is normal and dimX = dimY = 0 but 
dim(X × Y ) > 0 [8]. Below we recall some details, following the exposition of the construction given in [6].

Definition 2 ([7]). Let X be a set, and let n ∈ N. The n-cardinality (with respect to X) of a set A ⊂ Xn, 
denoted by |A|n, is the least cardinal κ such that

A ⊂
n ⋃︂

i=1
(Xi−1 × Y ×Xn−i)

for some Y ⊂ X with |Y | = κ (here and in what follows it is assumed that X0 × Y = Y × X0 = Y ). 
Clearly, |A|1 = |A| and |A|n ≤ |A|. If |A|n ≤ ω, then A is said to be n-countable; otherwise, A is said to be 
n-uncountable.

For x ∈ Xn and i ≤ n, we denote the ith coordinate of x by xi and the set of all coordinates of x by x̃; 
in other words, we assume that x = (x1, . . . , xn) and set x̃ = {x1, . . . , xn}.

Lemma 1 (see [6, Lemma 24.1]). Given a set X, a positive integer n, and an infinite cardinal κ, the following 
conditions on A ⊂ Xn are equivalent:

(a) |A|n ≥ κ;
(b) A contains a subset B of cardinality κ such that p̃ ∩ q̃ = ∅ whenever p and q are distinct points of B.

Definition 3 ([6, p.   186]). Suppose given n ∈ N, a set X, and a topology τ on Xn. A set B ⊂ X is said to 
be weakly n-Bernstein with respect to τ if |A ∩Bn|n = 2ω for every n-uncountable τ -closed set A ⊂ Xn.
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Abusing notation, given a topology τ on X, we denote the product topology on Xn by τn. The proof of 
the following lemma is very similar to that of Theorem 24.3 in [6].

Lemma 2 (see [6, Theorem 24.3 and Proposition 24.4]). Let (X, τ) be a space with separable completely 
metrizable topology τ , and let μ be a topology on X2 with the following properties:

(i) μ ⊃ τ2;
(ii) X2 contains at most 2ω 2-uncountable μ-closed sets;
(iii) |A|2 ≥ 2ω for any 2-uncountable μ-closed set A ⊂ X2.

Then X has pairwise disjoint subsets B1, B2, . . . such that every Bi is weakly 2-Bernstein with respect to μ
and weakly n-Bernstein with respect to τn for all n ∈ N.

Proof. Let us denote the family of all 2-uncountable μ-closed subsets of X2 by Aμ,2 and the family of all n
uncountable τn-closed subsets of Xn, n ∈ N, by Aτ,n. Note that Aμ,2 ⊃ Aτ,2 (because τ2 ⊂ μ), |Aτ,n| ≤ 2ω
for n ∈ N (because (Xn, τn) is second-countable), and |Aμ,2| ≤ 2ω (by assumption (ii) of the lemma). We 
set

A = Aμ,2 ∪
⋃︂
n∈N

Aτ,n

and index the elements of A by ordinals less than 2ω as A = {Aα : α < 2ω} so that each element is assigned 
2ω indices. Let α < 2ω. If Aα ∈ Aμ,2, then we set n(α) = 2; otherwise, we denote by n(α) the unique n ∈ N

(n ̸= 2) for which Aα ∈ Aτ,n. For all α ∈ 2ω and i ∈ N, we recursively choose points p(α, i) ∈ Aα so that 
p̃(α, i) ∩ p̃(β, j) = ∅ if α ̸= β or i ̸= j in precisely the same way as in the proof of Theorem 24.3 of [6]; the 
only difference is that, in the case n(γ) = 2, we use our assumption (iii) and Lemma 1 to find a B ⊂ Aγ

such that |B| = 2ω and p̃ ∩ q̃ = ∅ for any distinct p, q ∈ B. After that, following [6, Theorem 24.3], we set

Bi =
⋃︂

{p̃(α, i) : α < 2ω}

for each i ∈ N. Clearly, Bi ∩Bj = ∅ if i ̸= j. For each n ̸= 2, any n-uncountable τn-closed subset A of Xn

equals Aα for 2ω indices α ∈ 2ω, and we have p(α, i) ∈ A ∩ B
n(α)
i and n(α) = n for each of these α and 

all i ∈ N. Since p̃(α, i) ∩ p̃(β, i) = ∅ for α ̸= β, it follows that |A ∩ Bn
i |n ≥ 2ω by Lemma 1. Similarly, we 

have |A ∩B2
i |2 ≥ 2ω for any 2-uncountable μ-closed (and hence for any 2-uncountable τ2-closed) subset A

of X2. □
Let C be the Cantor set in [0, 1] ⊂ R, and let ε be the usual topology on C (induced by the Euclidean 

topology of R). In [6] a special topology μ on C2 was defined which satisfies conditions (i)--(iii) of Lemma 2
for C and ε playing the roles of X and τ (see Lemmas 27.2 and the proof of Lemma 27.3 in [6]). By Lemma 2
C contains pairwise disjoint sets S1, S2, . . . which are weakly 2-Bernstein with respect to μ and weakly n
Bernstein with respect to εn for all n ∈ N. Note that the set S = C \ (S1 ∪ S2) is weakly 2-Bernstein with 
respect to μ and weakly n-Bernstein with respect to εn for all n ∈ N too, because it contains the set S3
with these properties. In [6, proof of Theorem 27.5], given any partition {S, S1, S2} of C into subsets that 
are weakly 2-Bernstein with respect to μ, topologies τ1 and τ2 on C were constructed which satisfied, in 
particular, the following conditions for i = 1, 2 (see [6, pp. 210, 211]):

(1) τi ⊃ ε;
(2) any τi-neighborhood of any point of Si is an ε-neighborhood of this point;
(3) τi has a base consisting of ε-closed sets;
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(4) dim(C, τi) = dim0(C, τi) = 0;
(5) dim((C, τ1) × (C, τ2)) = dim0((C, τ1) × (C, τ2)) = 1.

We fix topologies τ1 and τ2 on C with these properties and set Ci = (C, τi) for i = 1, 2. Note that it 
follows from (2) that the restriction of the topology τ2 to S2 coincides with the topology induced on S2 by 
ε. In what follows, by S2 we mean the set S2 endowed with this topology, i.e., treat S2 as a subspace of 
(C, ε); this is a separable metrizable space. In [6, Example 27.8] it was shown that

(6) dim0(C1 × S2) > 0.

Lemma 3. The spaces Cn
1 are Lindelöf for all n ∈ N.

Proof. We argue by induction on n.
Let γ be a τ1-open cover of C1. For each x ∈ C1, choose an element Vx of γ containing x. In view of 

(2), each point s ∈ S1 has an ε-open neighborhood Us contained in Vs. Let U =
⋃︁

s∈S1
Us. Since S1 is 

weakly 1-Bernstein with respect to ε and C1 \U is an ε-closed set disjoint from S1, it follows that C1 \U is 
1-countable, that is, countable. Let {Usk : k ∈ N} be a countable subcover of the ε-open cover {Us : s ∈ S1}
of S1. Then {Vsk : k ∈ N} ∪ {Vx : x ∈ C1 \ U} is a countable subcover of γ.

Suppose that n > 1 and Ck
1 is known to be Lindelöf for every k < n. Let γ be a τn1 -open cover of Cn

1 . 
Again, for each x ∈ Cn

1 , we choose an element Vx of γ containing x. In view of (2) each point s ∈ Sn
1 has an 

εn-open neighborhood Us contained in Vs. Let U =
⋃︁

s∈Sn
1
Us. Since S1 is weakly n-Bernstein with respect 

to εn and Cn
1 \ U is an εn-closed set disjoint from Sn

1 , it follows that Cn
1 \ U is n-countable, that is, there 

exists a countable set Y ⊂ C1 such that

Cn
1 \ U ⊂

n ⋃︂
k=1

(Ck−1
1 × Y × Cn−k

1 ).

This means that Cn
1 \ U is contained in the countable union of spaces of the form Ck−1

1 × {x} × Cn−k
1 , 

where k ≤ n and x ∈ Y , each of which is homeomorphic to Cn−1
1 and therefore Lindelöf by the induction 

hypothesis. It remains to choose a countable subfamily of γ covering Cn
1 \ U and a countable subfamily of 

{Vs : s ∈ Sn
1 } covering U , which exists because {Vs : s ∈ Sn

1 } has the εn-open refinement {Us : s ∈ Sn
1 }. □

Lemma 4. Suppose that G1, G2, M1, and M2 are topological groups with the following properties:

(i) M1 and M2 are topological products of zero-dimensional second-countable topological groups;
(ii) G1 and G2 are subgroups of M1 and M2, respectively;
(iii) C1 × S2 is C-embedded in G1 ×G2.

Then the group G1 ×G2 is not R-factorizable.

Proof. Any product of zero-dimensional second-countable topological spaces is strongly zero-dimensional 
[9]. Therefore, so is the product M1 × M2, and it contains G1 × G2 as a subgroup. As is known, any R
factorizable subgroup of a topological group G is z-embedded in G [10, Theorem 3.2]. It follows that if the 
group G1 ×G2 were R-factorizable, then this group, as well as its C-embedded subspace C1 ×S2, would be 
z-embedded in M1×M2. On the other hand, any z-embedded subspace of a strongly zero-dimensional space 
is strongly zero-dimensional [6, Theorem 11.22], while dim0(C1×S2) > 0. Hence C1×S2 is not z-embedded 
in M1 ×M2 and G1 ×G2 is not R-factorizable. □
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The product C1 × S2 is surely C-embedded in G1 × G2 when C1 × S2 is a retract of G1 × G2, which 
is the case if C1 is a retract of G1 and S2 is a retract of G2. Thus, we will look for topological groups G1
and G2 containing C1 and S2 as retracts. These G1 and G2 will be the Boolean groups B(C1) and B(S2), 
respectively, with special topologies.

A Boolean group is a group in which all elements are of order 2 (all such groups are Abelian), and the 
Boolean group B(X) with basis X is the set [X]<ω of finite subsets of X endowed with the operation △ of 
symmetric difference. The zero element is the empty set. Each point x ∈ X is identified with the singleton 
{x}. We use the notation +2 for the group operation of B(X) and occasionally write △ instead of +2. Thus, 
if x ∈ X, F,G ∈ B(X), and A ⊂ B(X), then

x+2 F = {x}+2 F = {x} △ F, F +2 G = F △ G,

F +2 A = {F +2 A : A ∈ A} = {F △ A : A ∈ A}.

Let X be a topological space. The subgroups of B(X) of the form

Hγ = {F ∈ B(X) : |F ∩ U | is even for each U ∈ γ},

where γ ranges over all disjoint open covers of X, are normal (since B(X) is Abelian), and the set of 
all these subgroups is obviously closed under the formation of finite intersections. Therefore, this set is 
a neighborhood base at zero of a group topology on B(X) (see, e.g., [3, Theorem 1.3.12]). If X is zero
dimensional, then B(X) with this topology contains X as a subspace, because given any γ and any x ∈ X, 
we obviously have x+2 Hγ ∩X = U , where U is the element of γ containing x (this element U is determined 
uniquely, because γ is disjoint). In what follows, we use the notation B(X) for the abstract (that is, without 
topology) Boolean group with basis X and Blin(X) for B(X) with this topology.

Recall that a topological space is said to be non-Archimedean if it has a base B such that, for any 
B1, B2 ∈ B, either B1 ∩ B2 = ∅ or one of the sets B1 and B2 contains the other (see [12]). In Theorem 3 
(version 2) of [13], for a non-Archimedean space X, a retraction of the subspace

Bodd(X) = {F ∈ B(X) : |F | is odd}

of Blin(X) onto X was constructed (in [13] the group Blin(X) was denoted by Bz(X); our notation follows 
[11], where the groups Blin(X) were studied in detail). In the particular case of the Cantor set C, the 
construction can be modified as follows.

Recall that C can be represented as the subset of [0, 1] consisting of all numbers in [0, 1] whose ternary 
expansions do not contain 1. This suggests the natural base B for the topology of C:

B = {Un1...nk
: k ∈ N, ni ∈ {0, 2} for i ≤ k},

where Un1...nk
denotes the set of all numbers in [0, 1] whose ternary expansions begin with 0.n1 . . . nk. We 

also include the whole set C in B. Clearly, the elements of B form a tree with respect to reverse inclusion 
and every element of B is clopen.

There are two natural orders on the set of subsets of C, the order by inclusion and the order induced by 
the usual order of R. In what follows, when writing, say, ``A < B,'' ``minA,'' or ``A is on the left of B,'' we 
always mean the latter, unless otherwise is explicitly stated. Note that, given any two elements of B, either 
one of them is contained in the other or one of them is on the left of the other.

Let F be any finite subset of C. We say that a set A ⊂ C is F -void if A ∩ F = ∅, F -even if |A ∩ F | is 
even and positive, and A-odd if |A∩F | is odd. Clearly, each F -even element of B is contained in a maximal 
(by inclusion) F -even element of B, and the union of these maximal F -even elements is equal to the union 
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of all F -even elements of B. Moreover, this union is itself F -even, because B is a tree and therefore any 
two maximal F -even elements either coincide or are disjoint. Thus, no finite set F ⊂ C of odd cardinality 
is covered by F -even elements of B.

For F ∈ Bodd(C), we set

r(F ) = min(F \⋃︁{B ∈ B : B is F -even}), (∗)

or, equivalently,

r(F ) = min(F \⋃︁{B ∈ B : B is an inclusion-maximal F -even element of B}).

Lemma 5. There exists a second-countable zero-dimensional group topology τ on B(C) such that it induces 
the Euclidean topology ε on C and the map r : Bodd(C) → C defined by (∗) is continuous with respect to the 
topology τ |Bodd(C) (that is, τ restricted to Bodd(C)).

Proof. Recall that, given a disjoint open cover γ of C,

Hγ = {F ∈ B(C) : |F ∩ U | is even for each U ∈ γ}.

The family

H = {Hγ : γ is a disjoint cover of C by elements of B}

of subgroups of B(C) is a neighborhood base at zero for a group topology τ of B(C). This family is 
countable, because all open disjoint covers of C are finite (since C is compact) and B is countable. It is easy 
to check that C is contained in (B(C), τ) as a subspace. Indeed, take any point x ∈ C and any neighborhood 
Vx ∈ B of x. Let γ be a disjoint cover of C consisting of Vx and some other elements of B. If F ∈ Hγ and 
x+2 F = {x} △ F ∈ C, then either F = ∅ or F = {x, y}. In the latter case, x+2 F = y and by the definition 
of Hγ the point y must belong to the same element of γ as x, that is, to Vx. Thus, (x+2 Hγ)∩C ⊂ Vx. This 
shows that the topology induced by τ on C is not coarser than the topology ε of C. On the other hand, 
it cannot be finer, because τ is coarser than the topology of Blin(C). Obviously, (B(C), τ) is T0 and hence 
Tychonoff.

Note that all elements in any Hγ are of even cardinality. Therefore, for every F ∈ Bodd(C), we have 
F +2 Hγ = {F △ H : H ∈ Hγ} ⊂ Bodd(C).

Let us show that the map r is continuous with respect to the topology τ |Bodd(C). Suppose that x = r(F )
for F ∈ Bodd(X). By construction x ∈ F . Take any neighborhood U of x. Let V1, . . . , Vm be all inclusion
maximal F -even elements of B; their number is finite because they are pairwise disjoint (since B is a tree) 
and each of them intersects the finite set F . None of these elements contains x (because x = r(F )), and all 
of them are clopen. Choose a neighborhood Vx ∈ B of x satisfying the conditions Vx ⊂ U , Vx ∩ F = {x}, 
and Vx ∩ Vi = ∅ for i ≤ m. Consider the cover of C consisting of the sets Vx and V1, . . . , Vm and of all 
elements of B disjoint from them. This cover has a disjoint subcover γ, because any two of its elements 
are either disjoint or contained in one another (recall that B is a tree). Clearly, γ is finite. We claim that 
r(F +2 Hγ) ⊂ Vx.

Indeed, take an H ∈ Hγ . We must show that r(F △ H) ∈ Vx. Note that an element V of γ is (F △ H)-odd 
if and only if it is F -odd, because each element of γ is either H-even or H-void and a point of F can be 
canceled in F △ H only by some point of H. In particular, Vx is (F △ H)-odd.

Let V be the leftmost (with respect to the natural order < on C) F -odd (= (F △ H)-odd) element of γ. 
Note that V ∩F is disjoint from all inclusion-maximal F -even elements of B, because all such elements are 
included in γ and V is not among them. By the definition of the map r we have x = r(F ) ≤ min(V ∩ F ). 
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Since x ∈ Vx, it follows that Vx either coincides with V or is on the left of V , and since Vx is F -odd, it 
follows that V = Vx.

The point r(F △ H) cannot belong to an (F △ H)-even or (F △ H)-void element of γ, because γ ⊂ B

and

r(F △ H) ∈ (F △ H) \⋃︁{B ∈ B : B is (F △ H)-even}
= (F △ H) \⋃︁{B ∈ B : B is (F △ H)-even or (F △ H)-void}).

Therefore, the element V of γ containing r(F △ H) is (F △ H)-odd and hence either coincides with Vx

or is on the right of Vx. Since r(F △ H) is the least element of F △ H not belonging to 
⋃︁{B ∈ B: B is 

(F △ H)-even} and r(F △ H) ∈ V , it follows that there exists a family B′ of (F △ H)-even elements of B
such that

⋃︂
B′ ⊃ {y ∈ F △ H : y < V }.

Suppose that V ̸= Vx. Since Vx is (F △ H)-odd, we have (F △ H) ∩ Vx ̸= ∅. Let W1, . . . ,Wk be 
all inclusion-maximal elements of B′ intersecting (F △ H) ∩ Vx. Each Wi, being an element of B, either 
contains Vx or is contained in Vx, because Vx ∈ B. By maximality the sets W1, . . . ,Wk are pairwise disjoint. 
Therefore, if k ≥ 2, then all of them are contained in Vx and Vx ∩ (F △ H) =

⋃︁
i≤k Wi ∩ (F △ H). This is 

impossible, because |Vx ∩ (F △ H)| is odd and all |Wi ∩ (F △ H)| are even. Thus, some element W of B′

contains Vx ∋ x. Moreover, this W is a union of some elements of γ, since Vx ∈ γ, W ∈ B, γ ⊂ B, and γ
covers C. This means that |W ∩H| is even and therefore so is |W ∩F |, because W is (F △ H)-even. However, 
x equals r(F ) and hence does not belong to any F -even or F -void element of B. This contradiction proves 
that V = Vx, i.e., r(F △ H) ∈ Vx.

Thus, r(F +2 Hγ) ⊂ Vx. We have shown that, for any F ∈ Bodd(C) and any neighborhood U of x = r(F )
in C, there exists an Hγ ∈ H such that the image of the open neighborhood F +2 Hγ of F in (B(C), τ)
under r is contained in U . This means that r is continuous with respect to the topology τ |Bodd(C).

It remains to note that the group (B(C), τ) is zero-dimensional and metrizable, because the neighborhood 
base H at zero is countable and consists of open (and hence closed) subgroups, and it is separable, because

B(C) =
⋃︂
n∈ω

Bn(C), where Bn(C) = {F ∈ B(C) : |F | ≤ n},

and each Bn(C) is the image of the separable space (C ⊕{∅})n under the addition map in : (x1, . . . , xn) ↦→
x1 +2 . . .+2 xn, which is continuous with respect to any group topology on B(C) inducing ε on C. □

Let Bτ (C) denote the group B(C) with the topology τ defined in Lemma 5.

Lemma 6. The Cantor space C is a retract of Bτ (C). Moreover, for any x0 ∈ C, the map

r̂ : Bτ (C) → C, r̂(F ) =
{︄
r(F ) if F ∈ Bodd(C),
x0 otherwise,

where r is defined by (∗), is a retraction.

Proof. The map r̂ is continuous, because Bodd(C) is clopen in Bτ (C), being a coset of the open subgroup

Beven(C) = H{C} = {F ∈ B(C) : |F ∩ C| = |F | is even}
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of Bτ (C). Clearly, for every x ∈ C, we have

r̂(x) = r(x) = min({x} \⋃︁{B ∈ B : B is {x}-even}) = x,

because there are no {x}-even sets. Thus, r̂ is a retraction. □
Now we can prove the main theorem.

Proof of the main theorem. We take the group Blin(C1) as G1 and the subgroup of Bτ (C) generated by S2
as G2. According to [13, Theorem 7 (version 2)], C1 is a retract of Blin(C1). Take any x0 ∈ S2. Restricting 
the retraction r̂ defined in Lemma 6 for this x0 to G2, we obtain a retraction of G2 onto S2. Indeed, according 
to (∗), we have r(F ) ∈ F for any F ∈ B(C). Therefore, r̂(F ) ∈ F ∪ {x0} ⊂ S2 for any F ∈ G2, whence 
r̂(G2) = S2.

By Lemma 5 the group Bτ (C) is second-countable and zero-dimensional; hence so is its subgroup G2. 
The topology of Blin(C1) is finer than τ , which implies the submetrizability of G1. The same argument as 
at the end of the proof of Lemma 5 shows that Gn

1 is Lindelöf for any n ∈ N. In more detail,

Blin(C1) =
⋃︂
n∈ω

Bn(C), where Bn(C1) = {F ∈ B(C) : |F | ≤ n},

and each Bn(C1) is the image of (C1 ⊕ {∅})n under the continuous addition map in : (x1, . . . , xn) ↦→
x1 +2 . . .+2 xn. Hence G1 = Blin(C1) is a continuous image of the sum C∞ =

⨁︁
n∈ω(C1 ⊕ {∅})n and Gn

1
is a continuous image of Cn

∞ for every n ∈ N. By Lemma 3 all spaces Cn
1 are Lindelöf; therefore, so are 

(C1 ⊕ {∅})n and Cn
∞. It follows that all Gn

1 are Lindelöf.
Note that both groups G1 and G2 are R-factorizable, being Lindelöf [1]. Let us show that G1×G2 is not. 

To this end, we first embed G1 in a product of zero-dimensional second-countable groups and then apply 
Lemma 4.

Let Γ denote the set of all disjoint open covers of C1. We fix a countable discrete space D = {dn : n ∈ N}
and denote by Bd(D) the Boolean group B(D) endowed with the discrete topology. Note that any cover 
γ ∈ Γ is countable, because C1 is Lindelöf. Let γ = {Un : n ∈ N} be such a cover. Consider the map 
fγ : C1 → D defined by fγ(Un) = {dn} for n ∈ N. Let f̂γ : G1 → Bd(D) be the homomorphism extending 
fγ to G1; it is defined by f̂γ(x1 +2 . . .+2 xn) = fγ(x1) +2 . . .+2 fγ(x1) for x1, . . . , xn ∈ C1. The preimage 
f̂−1
γ of the zero element ∅ of Bd(D) is precisely Hγ = {F ∈ Blin(C1) : |F ∩ U | is even for each U ∈ γ}; 

therefore, f̂γ is continuous. Since the subgroups Hγ , γ ∈ Γ, form a base of neighborhoods of zero for the 
topology of Blin(X), it follows that the homomorphisms f̂γ , γ ∈ Γ, separate points from closed sets and 
therefore the diagonal

Δ
γ∈Γ

f̂γ : Blin(C1) → Bd(D)|Γ|

is a homeomorphic embedding; clearly, this is a homomorphism. Thus, Blin(C1) is topologically isomorphic 
to a subgroup of the power Bd(D)|Γ| of the countable discrete group Bd(D), which gives us what we need.

Applying Lemma 4 to the groups G1, G2, M1 = Bd(D)|Γ|, and M2 = G2, we see that G1 × G2 is not 
R-factorizable. □

The author is most grateful to Evgenii Reznichenko for very useful discussions.
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