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In 1954 [11] Mal’tsev proved that a variety V of universal algebras is congruence-permutable (i.e., any 
two congruences of any algebra in V commute under composition) if and only if there exists a term μ with 
three variables in the language of V such that the equations

x = μ(x, y, y) = μ(y, y, x) (M)

hold identically in V . This theorem had a great impact on the further development of universal algebra.
In this paper, we refer to μ as a Mal’tsev term and to an operation satisfying condition (M) as a Mal’tsev 

operation and study topological Mal’tsev algebras, that is, topological spaces with a continuous Mal’tsev 
operation. We begin with a brief introduction to the theory of topological universal algebras, their varieties, 
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and free topological algebras, prove some fundamental properties of topological Mal’tsev algebras, and study 
in detail free topological algebras in the full variety of topological Mal’tsev algebras. We also consider a 
relationship between topological Mal’tsev algebras and topological heaps and discuss conditions under which 
a topological space is a retract of a topological group and some related questions.

It turns out that Mal’tsev’s theorem remains valid for varieties of topological algebras. The following 
theorem readily follows from results of Mal’tsev and Taylor; its proof is given in Section 2.

Theorem A. A variety of topological algebras is congruence-permutable if and only if there exists a Mal’tsev 
term in the language of this variety.

The permutability of congruences in a variety of topological algebras is also equivalent to following 
important property, which makes it possible to form topological quotients of algebras in that variety. Its 
proof is given in Section 2.

Theorem B. If a variety V of topological algebras is congruence-permutable, then, given any congruence ∼
on any algebra A ∈ V , the ∼-saturation of any open subset of A is open.

Corollary. Given any topological algebra A in a congruence-permutable variety, its topological quotient by 
any congruence ∼ is dfined, i.e., the operations of A/∼ are continuous with respect to the quotient topology. 
Moreover, on the abstract quotient A/∼, there exists a unique topology with respect to which all operations 
of V are continuous and the canonical projection A → A/∼ is a continuous open homomorphism.

The simple proof of this corollary is similar to that of Corollary 2.2 in [20].
Other important consequences of the permutability of congruences are as follows.

Theorem C ([20, Corollary   2.7]). Every T0 topological algebra in a congruence-permutable variety of topo
logical algebras is Hausdorff.

(Curiously, the condition that all T0 algebras in a full variety of topological algebras are Hausdorff is 
equivalent to the existence of certain terms satisfying certain identities in that variety [9].)

Theorem D ([11, Theorem   11], [4, Exercise   2.4.C (c)], and [20, Corollary   2.4]). Let V be a congruence
permutable variety of topological algebras. Then, for any A ∈ V and any congruence θ on A, the following 
conditions are equivalent:

• the quotient algebra A/θ is Hausdorff;
• all equivalence classes of θ are closed in A;
• the relation θ (that is, the kernel of the canonical homomorphism A → A/θ) is closed in A×A.

Moreover, if A is a subalgebra of B ∈ V , then the closure θ of θ in B × B is a congruence on the closure 
of A in B.

In what follows, we use the standard symbols R, Q, N, and N0 for the sets of real numbers, rational 
numbers, positive integers, and nonnegative integers, respectively. By |X| we denote the cardinality of a set 
X. Details concerning notions and facts related to topology can be found in [4] and to algebra, in [7].

1. Universal algebras

Let A be any nonempty set. Given a nonnegative integer n, a map An → A is called an n-ary operation
on A. In particular, a nullary operation is a map {∅} → A, which is identfied with a fixed element of A. 
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A universal algebra, or simply algebra, is a nonempty set A together with any family of operations on A. A 
more formal definition is as follows.

Suppose given a set Σ (of symbols of operations) together with a function ν : Σ → N0 assigning arity to 
each symbol in Σ. For each n ≥ 0, let Σn denote the set of symbols in Σ to which the arity n is assigned, 
so that Σ =

⋃
{Σn : n ≥ 0}. In the context of universal algebras, such a set Σ together with ν is called a 

signature, a type, or a language. A Σ-algebra structure on A is a family of maps Σn → AAn , n ≥ 0, which 
associate each symbol σ ∈ Σn with an operation σA : An → A on A for every n; the operations σA are said 
to be basic. The set A with this structure is called a Σ-algebra or a (universal) algebra of signature (or type) 
Σ. In what follows, when there is no danger of confusion, we often omit the superscript A and use the same 
notation for elements of Σ (that is, symbols of operations) and the corresponding operations on the algebra.

Given Σ-algebras A and B, a map f : A → B, and σ ∈ Σn, we say that f is compatible with σ if

σB(f(x1), . . . , f(xn)) = f(σA(x1, . . . , xn))

for any x1, . . . , xn ∈ A. A map compatible with all σ ∈ Σ is called a homomorphism. A homomorphism 
with an inverse which is also a homomorphism is called an isomorphism. The kernel of a homomorphism 
f : A → B is dfined by

kerh = {(x, y) : (x, y) ∈ A2, f(x) = f(y)}.

In universal algebra a crucial role is played by special equivalence relations called congruences. In what 
follows, given an equivalence relation ∼ on a set X and an x ∈ X, by [x]∼ we denote the equivalence class 
of ∼ containing x.

An equivalence relation ∼ on a Σ-algebra A is compatible with an operation σ ∈ Σn if σ(x1, . . . , xn) ∼
σ(y1, . . . , yn) whenever xi ∼ yi for all i ≤ n. An equivalence relation compatible with all operations is called 
a congruence. It is easy to see that the quotient set of A by any congruence ∼ is a Σ-algebra with operations 
dfined by σ([x1]∼, . . . , [xn]∼) = [σ(x1), . . . , σ(xn)]∼, where σ ∈ Σn, n ≥ 0, the canonical projection is a 
homomorphism, and ∼ is the kernel of this homomorphism. Moreover, the kernel of each homomorphism 
h : A → B is a congruence and B is isomorphic to the quotient of A by this congruence (see, e.g., [7]).

For any signature Σ and any set S of symbols (representing variable symbols), terms or words over S
are formal expressions composed of symbols in Σ and S. Formally, terms and their variables are dfined 
recursively as follows:

• each x ∈ S is a term, and its variable is x;
• if σ ∈ Σn and t1, . . . , tn are terms, then σ(t1, . . . , tn) is a term, and its variables are all variables of 

t1, . . . , tn. In particular, any σ ∈ Σ0 is a term with no variables.

The notion of a subalgebra of a given Σ-algebra is naturally dfined as a subset B of A such that 
σ(Bn) ⊂ B for any n ≥ 0 and σ ∈ Σn. A Σ-algebra A is generated by a set X ⊂ A if any subalgebra of A
containing X coincides with A.

An identity over Σ is a formula ∀x1∀x2 . . .∀xn(t = s), where x1, . . . , xn are symbols of variables and t
and s are terms all of whose variables are among x1, x2, . . . , xn.

A variety is any class of algebras of the same signature closed under the formation of Cartesian products, 
subalgebras, and quotients. According to Birkhoff’s theorem, a class V of Σ-algebras of the same signature 
is a variety if and only if there exists a set of identities over Σ such that V consists of precisely those 
Σ-algebras in which all identities in this set hold.

A free algebra in V on a set X, or an algebra freely generated by X in V , is an algebra A(X) ∈ V

with the following universal property: Given any A ∈ V and any map f : X → A, there exists a unique 
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homomorphism A(X) → A extending f . It is well known that A(X) is indeed generated by X, that all free 
algebras on X are isomorphic, and that every algebra in V generated by X is a quotient of A(X).

We denote the variety of all Σ-algebras by U (Σ).
Any nonempty set X generates the absolutely free Σ-algebra W (X) (known also as term or word algebra) 

consisting of all terms over Σ with variables in X. This algebra is the free algebra on X in the variety 
U (Σ) of all Σ-algebras (so that any Σ-algebra generated by X is its quotient). Therefore, each term t
with k variables naturally dfines a k-ary operation tA : Ak → A on any Σ-algebra A. We refer to such 
operations as derived operations or polynomials. Fixing all but one variables of a basic operation, we obtain 
a map A → A; following Mal’tsev [11], we refer to such maps as principal translations and to their finite 
compositions as elementary translations. All elementary translations form a semigroup under composition.

Given a set Σ′ of derived operations, we can treat any Σ-algebra A as a Σ′-algebra A′ in a natural way 
(it coincides with A as a set but has different basic operations); the algebra A′ is called a derived Σ′-algebra
of A, and the variety generated by all derived Σ′-algebras of all Σ-algebras in a given variety V is called 
the derived variety of V .

2. Varieties of topological algebras

A topological Σ-algebra is a Σ-algebra A with a topology with respect to which all operations σ : An → A, 
where n ≥ 0 and σ ∈ Σn, are continuous. A topological subalgebra of a topological algebra A is a subalgebra 
endowed with the induced topology, and the topological quotient of A by a congruence ∼ is A/ ∼ with 
the quotient topology (provided that the operations are continuous with respect to this topology). If the 
underlying abstract algebra of A belongs to a congruence-permutable variety, then, by Theorem B, the 
topological quotient of A by any congruence exists and the canonical projection is a continuous open 
homomorphism.

There are several approaches to defining varieties of topological algebras: they may be dfined as classes 
of topological algebras closed under certain topologo-algebraic operations, as classes dfined by some topo
logical analogues of identities, or in some hybrid way (for example, as classes of topological algebras which 
certain topological properties whose underlying abstract algebras belong to a certain class of abstract alge
bras).

The first approach was developed by Taylor; in what follows, we use his definitions [20].

Definition 1. A variety of topological algebras, or a topological variety, is a class of topological algebras of the 
same signature closed under the formation of topological products, topological quotients, and subalgebras. 
A variety of topological algebras closed under the formation of any continuous homomorphic images is said 
to be wide. Varieties of topological algebras dfinable by identities (i.e., those consisting of all topological 
algebras whose underlying abstract algebras belong to a given abstract variety of algebras) are called full 
varieties of topological algebras.

Note that not every wide variety is full (for example, the variety of precompact topological groups is wide 
but not full). However, for any variety V of topological Σ-algebras,

V = {A ∈ U (Σ) : there exists a topology τ on A such that (A, τ) ∈ V }

is a variety of Σ-algebras [20, Corollary 0.5]. This Taylor’s observation, together with other results of Taylor 
and Mal’tsev, imply Theorems A and B.

Proof of Theorems A and B. Whether or not the congruences of a topological algebra are permutable does 
not depend on the topology of the algebra. Thus, a variety V of topological algebras is congruence
permutable if and only if so is the variety V of abstract algebras. By Mal’tsev’s theorem in [11, Theorem 4] 
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the congruence permutability of V is equivalent to the existence of a Mal’tsev term in the language of V
(that is, of V ), which proves Theorem A.

By Taylor’s theorem in [20, Theorem 2.1] if the full variety of all topological algebras with underlying 
abstract algebras in V (or, equivalently, the variety V ) is congruence-permutable, then, given any topological 
algebra A ∈ V (in particular, any A ∈ V ), any open set U ⊂ A, and any congruence ∼ of A, the ∼-saturation 
of U is open. This proves Theorem B. �

Taylor proved in [20, Theorem 2.1] that, for full varieties, the converse of Theorem B is also true; namely, 
if V is a full variety, then the saturation with respect to a congruence of any open set in any topological 
algebra A ∈ V is open if and only if V is congruence-permutable.

In the same paper [20] Taylor tried to fit his definitions in the framework of the second approach to 
varieties of topological algebras (based on identities). He proved that wide varieties are precisely the classes 
of topological algebras dfined by what he called limit identities and varieties are classes dfined by limit 
identities and contingent limit identities.1 Later this approach was developed further by Protasov [15], who 
proposed the most general and natural definition of a variety of topological Σ-algebras as the class of Σ
algebra A on which all filters in a certain set of filters on the absolutely free Σ-algebra W (X) converge 
under any interpretation X → A. In other words, he treated filters as topological identities and the con
vergence of filters as the fufillment of identities. Protasov’s varieties are precisely classes of algebras closed 
under the formation of topological products, closed subalgebras, and continuous homomorphic images; thus, 
both Taylor’s full and wide varieties, as well as many other classes of topological algebras, are varieties in 
Protasov’s sense, but Taylor’s varieties are not.

The third approach is exemplfied by Mal’tsev’s primitive classes [10] (consisting of all Hausdorff algebras 
in a given full variety) and Choban’s Q-quasivarieties2 [1,2] (classes of topological algebras with a topolog
ical property Q, e.g., satisfying a certain separation axiom, and closed under the formation of topological 
products and subalgebras).

In topological varieties free topological algebras are dfined by analogy with the abstract case.

Definition 2. Let V be a variety of topological algebras, and let X be a topological space. A free topological 
algebra on X in V is a topological algebra A(X) ∈ V together with a continuous map i : X → A(X) such 
that

• A(X) is generated by i(X);
• given any continuous map f : X → B, where B ∈ V , there exists a continuous homomorphism 

h : A(X) → B for which f = h ◦ i.

It is well known that, given any topological variety V and any space X, a free topological algebra A(X)
on X in V exists and is unique in the sense that if A′(X) and i′ : X → A′(X) satisfy the same conditions 
as A(X) and i, then there exists a topological isomorphism ϕ : A(X) → A′(X) for which i′ = ϕ · i (see, e.g., 
[10]).

The notion of a free topological algebra is particularly useful in the case of a congruence-permutable 
topological variety, because, in this case, each topological algebra in the variety is a topological quotient of 
a free algebra.

A standard argument based on the diagonal of a set of maps from X to algebras in V shows that such a 
pair always exists and is unique up to topological isomorphism (see [10]).

1 Contingent limit identities are a natural analogue of quasi-identities; thus, it might be more correct to refer to Taylor’s varieties 
as quasivarieties.
2 This is Choban’s term (the conventional meaning of the term ``quasivariety'' in universal algebra is quite different). In fact, 

such classes are more like prevarieties.
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Remark 1. If V contains a non-one-element algebra, then

(i) i is injective and
(ii) A(X) is freely generated by i(X), that is, it is isomorphic to the abstract free algebra A(X) on X

(see [20, Proposition 1.2]); this follows from the observation that, given any A ∈ V , the algebra isomorphic 
to A but endowed with the indiscrete topology belongs to V [20].

Świerczkowski proved in [19]3 (see also [13] and [14]) that if X is Tychonoff and the variety V is full, 
then, in addition,

(iii) i is a homeomorphic embedding, so that X can be identfied with its image i(X) in A(X),
(iv) the topological algebra A(X) contains X as a closed subspace, and
(v) A(X) is functionally Hausdorff; moreover, there exists a coarser Tychonoff topology τ on A(X) such 

that (A(X), τ) still remains a topological algebra and contains X as a closed subspace.

3. Topological Mal’tsev algebras

We use μ as a symbol for a ternary operation.

Definition 3. A Mal’tsev topological algebra is a topological algebra with signature {μ} in which the equations

x = μ(x, y, y) = μ(y, y, x) (M)

hold identically. Any ternary operation μ satisfying the identity (M) is called a Mal’tsev operation.
By M we denote the variety of all Mal’tsev topological algebra.
A topological space on which a continuous Mal’tsev operation can be dfined (i.e., a space homeomorphic 

to a Mal’tsev topological algebra) is called a Mal’tsev space.

In what follows, by a Mal’tsev algebra we always mean a Mal’tsev topological algebra.
According to Theorem A, the underlying space of any topological algebra in any congruence-permutable 

variety of topological algebras is Mal’tsev. Well-known examples of such varieties are the variety of topo
logical groups and the more general varieties of topological left loops and quasigroups.

In a topological group, the Mal’tsev term is μ(x, y, z) = x · y−1 · z.
A left loop is an algebra L with two binary operations ∗ and \ and one nullary operation (constant) e

satisfying the identities

x ∗ (x \ y) = y, x \ (x ∗ y) = y, x ∗ e = x.

A Mal’tsev term on L is μ(x, y, z) = x ∗ (y \ z). Indeed, μ(x, x, y) = y by the first identity and μ(y, x, x) =
y ∗ e = y, because x \ x = x \ (x ∗ e) = e by the second identity.

A quasigroup is an algebra Q with three binary operations ∗, /, and \ satisfying the identities

(y/x) ∗ x = y, (y ∗ x)/x = y, x ∗ (x \ y) = y, x \ (x ∗ y) = y.

A Mal’tsev term is μ(x, y, z) = (x/(y \ y)) ∗ (y \ z) (the identity μ(x, x, y) = y follows from x/(x \ x) =
(x ∗ (x \ x))/(x \ x) = x).

3 Note that by a stronger topology Świerczkowski means a coarser one.
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Proposition 1. 

(1) All T0 Mal’tsev algebras are Hausdorff.
(2) All T0 topological quasigroups are regular.
(3) All T0 topological left loops are regular.

Proof. Assertion (1) is an immediate corollary of Theorem C.
(2) According to Theorem 2 of [11] (see also the lemma preceding this theorem), for any quasigroup, 

there exists a derived algebra whose elementary translations form a transitive group, and by Theorem 7 of 
[11], any Hausdorff topological algebra with this property is regular. It remains to apply assertion (1) and 
the above observation that the underlying space of any topological quasigroup is Mal’tsev.

(3) Recall that a topological space X is said to be rectfiable if there exists a homeomorphism ψ : X2 → X2

and a point e ∈ X such that π1(ψ(x, y)) = x and ψ(x, x) = (x, e) for all x ∈ X (here π1 denotes the 
projection onto the first coordinate). It is easy to see that any topological left loop is rectfiable: it suffices 
to set ψ(x, y) = (x, x \ y). The converse is also true (see, e.g., [21]). According to Corollary 2.2 of [8], any 
Hausdorff rectfiable space is regular. �

Hausdorff Mal’tsev spaces are not necessarily regular.

Example 1. Let X be the set Q endowed with the topology whose base consists of all open intervals and all 
sets of the form (a, b) \ { 1 

n : n ∈ N}. Thus, the topology of X is finer than the standard zero-dimensional 
topology of Q (induced from R). According to Theorem 2 of [6], X is a Mal’tsev space, and it is Hausdorff 
but not regular.

4. Free topological Mal’tsev algebras

We refer to the free topological algebra in M on a topological space X as the free topological Mal’tsev 
algebra, or simply the free Mal’tsev algebra, on X and denote it by M(X). By definition, M(X) is a Mal’tsev 
algebra for which there exists a continuous map iX : X → M(X) with the following properties:

• M(X) is generated by iX(X);
• given any continuous map f : X → M , where M ∈ M , there exists a continuous homomorphism 

h : M(X) → M such that f = h ◦ iX . In particular, any continuous map iX(X) → M ∈ M extends to 
a continuous homomorphism M(X) → M .

Theorem 1. 

(1) The free Mal’tsev algebra M(X) exists for every topological space X, and it is unique up to topological 
isomorphism.

(2) The map iX : X → M(X) is injective, and M(X) is freely generated by iX(X).
(3) Every Mal’tsev algebra M is the image of M(M) under an open continuous homomorphism which is 

simultaneously a retraction. Therefore, every Mal’tsev algebra is a topological quotient of a free Mal’tsev 
algebra.

(4) For any continuous map f : X → Y , there exists a unique continuous homomorphism h : M(X) → M(Y )
for which iY ◦ f = h ◦ iX , and if iY ◦ f ◦ i−1

X : iX(X) → iY (Y ) is quotient, then h is open.
(5) If M(X) is T0 (and hence Hausdorff), then i(X) is closed in M(X).
(6) If X is Tychonoff, then X is embedded in M(X) as a closed subspace, and if X is functionally Hausdorff, 

then so is M(X).
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Proof. Assertion (1) was proved by Mal’tsev in [10] for free topological algebras in any full varieties, and 
(2) follows from Proposition 1.2 of [20].

Let us prove (3). Take any Mal’tsev algebra M . By definition, there exists a continuous homomorphism 
h : M(M) → M such that the identity homeomorphism f : M → M equals h ◦ iM . Therefore, iM : M →
M(M) is a homeomorphic embedding and h is a retraction. Hence h is quotient (it suffices to note that, 
for any X ⊂ M , we have h−1(X) ∩ iM (M) = iM (X)). Since the variety M is congruence-permutable and 
h is continuous, it follows by Theorem B that, given any open set U ⊂ M(M), the set h−1(h(U)) is open 
in M(M) and hence h(U) is open in M . Therefore, h is an open continuous homomorphism and M is the 
topological quotient of M(M) by its kernel.

Let us prove (4). Given a continuous map f : X → Y , consider a continuous homomorphism h : M(X) →
M(Y ) for which iY ◦ f = h ◦ iX . It is unique, because M(X) is generated by iX(X) and, for any term 
t in the language of M and any x1, . . . , xn ∈ X (where n is the number of variables of t), we have 
h(t(x1, . . . , xn)) = t(h(x1), . . . , h(xn)).

Now suppose that iY ◦ f ◦ i−1
X is quotient (and hence surjective). Then h is surjective, because M(Y ) is 

generated by iY (Y ). Let M̃(X) be the topological quotient of M(X) by kerh (this is a Mal’tsev topological 
algebra by the corollary of Theorem B), and let h̃ be the corresponding canonical projection. Then the 
identity map ĩ : M̃(X) → M(Y ) is a continuous isomorphism and h = ĩ ◦ h̃. The map iY ◦ f ◦ i−1

X coincides 
with the restriction of h to iX(X). As a map of sets without topology, it also coincides with the restriction 
of h̃ to iX(X) (provided that we identify M̃(X) and M(Y ) as sets). Since the map iY ◦f ◦ i−1

X is quotient, it 
follows that the topology on its image is finest among those with respect to which it is continuous. Therefore, 
ĩ−1|iY (Y ) ◦ iY : Y → M̃(X) is a continuous injection. The continuous homomorphism g : M(Y ) → M̃(X) for 
which ĩ−1|iY (Y ) ◦ iY = g ◦ iY must coincide with ĩ−1 as a map of sets, because M(Y ) is freely generated by 
iY (Y ) and iY is injective. Thus, the identity isomorphism i is a homeomorphism and the homomorphism h
is quotient. By Theorem B it is also open.

We proceed to (5). Suppose that M(X) is Hausdorff. Let us denote M(X) by M and consider the free 
Mal’tsev algebra M(M). It follows from (3) that M can be treated as a closed subspace of M(M) (because 
any retract of a Hausdorff space is closed). Let MX be the subalgebra of M(M) generated by iX(X) ⊂ M . 
Clearly, this is algebraically the free algebra on iX(X) (because we can extend any map f from iX(X) to 
a {μ}-algebra A first to some map M → A and then to a homomorphism M(M) → A, whose restriction 
to iX(X) is a homomorphism MX → A extending f). Note that MX ∩M = iX(X). Indeed, suppose that 
y0 ∈ M \iX(X) and consider the map (not necessarily continuous) g : M → {0, 1} dfined by setting g(y) = 1
if y = y0 and g(y) = 0 otherwise. The set {0, 1} carries a group structure and hence a Mal’tsev operation. 
Therefore, the map g extends to a homomorphism of the abstract free {μ}-algebra on M (which coincides 
with M(M) as a set) to {0, 1}. The preimage of 0 under this homomorphism contains the subalgebra of 
M(M) generated by i(X) and does not contain y0.

Thus, MX and M(X) coincide as abstract algebras and MX with the topology induced on MX from 
M(M) is a Mal’tsev space containing iX(X) as a closed subspace. The identity homeomorphism iX(X) →
iX(X) extends to a continuous homomorphism MX → M(X), which is an isomorphism, because both 
algebras MX and M(X) are freely generated by iX(X). This means that there exists a topology on M(X)
which is coarser than the topology of M(X) and with respect to which iX(X) is closed. Therefore, iX(X)
is closed in M(X).

Both assertions of (6) follow from Świerczkowski’s theorem [19]. �

According to Świerczkowski’s theorem [19], any Tychonoff space X is embedded in M(X) as a closed 
subspace. However, this is not always the case, at least because there exists a topological space that cannot 
be embedded in a congruence-permutable topological algebra as a subspace [3, Corollary 3.6]. The following 
question naturally arises.



JID:TOPOL AID:109257 /FLA [m3L; v1.372] P.9 (1-15)
O.V. Sipacheva, A.A. Solonkov / Topology and its Applications ••• (••••) •••••• 9

Problem. What topological spaces X are embedded in M(X) as (closed) subspaces?

Together with the variety M of all Mal’tsev algebras, it makes sense to consider the class of all Tychonoff 
Mal’tsev algebras. Let us denote it by M 3 12 . We dfine the free Tychonoff Mal’tsev algebra M3 12 (X) on a 
Tychonoff space X as a Tychonoff Mal’tsev algebra for which there exists a continuous map iX : X →
M3 12 (X) with the following properties:

• M3 12 (X) is generated by iX(X);
• given any continuous map f : X → M , where M ∈ M 3 12 , there exists a continuous homomorphism 

h : M3 12 (X) → M such that f = h ◦ iX .

Theorem 2. Let X be any Tychonoff space.

(1) The free Mal’tsev space M3 12 (X) exists and is unique up to topological isomorphism.
(2) The map iX is a topological embedding, so that X can be identfied with the subspace iX(X) of M3 12 (X). 

Moreover, this subspace is closed.
(3) The Mal’tsev space M3 12 (X) is freely generated by iX(X) = X.
(4) Every M ∈ M 3 12 is the image of M3 12 (M) under an open continuous homomorphism which is simultane

ously a retraction. Therefore, every Tychonoff Mal’tsev space is a topological quotient of a free Tychonoff 
Mal’tsev space.

(5) Any quotient map X → M , where M ∈ M 3 12 , extends to a quotient homomorphism M3 12 (X) → M .

Proof. Assertion (1) is proved by a well-known standard argument based on the diagonal theorem, which 
applies to any multiplicative hereditary topological property rather to only being Tychonoff.

Note that, in the definition of the free Mal’tsev space M3 12 (X), it suffices to require that homomorphisms 
h with the property f = h ◦ iX exist only for continuous maps f from X to Tychonoff Mal’tsev algebras M
generated by f(X). Any such M has cardinality at most |X|·ω and, therefore, weight at most 2|X|·ω. Clearly, 
it is also sufficient to consider the maps f : X → M up to composition with topological isomorphisms of M ; 
thus, we can restrict ourselves to Mal’tsev algebras whose underlying spaces are contained in the Tychonoff 
cube [0, 1]2|X|·ω as subspaces. Clearly, all such Mal’tsev algebras, as well as continuous maps f from X to 
them, form a set. Let us index these maps by the elements of some set I as fι : X → Mι, ι ∈ I (spaces 
Mι with different indices may coincide). We set iX = Δ

ι∈I
fι : X →

∏
ι∈I Mι and dfine M3 12 (X) to be the 

Mal’tsev subalgebra of 
∏

ι∈I Mι generated by iX(X). It is easy to see that iX and M3 12 (X) have the required 
properties: any continuous map f from X to a Tychonoff Mal’tsev algebra M coincides with fι for some 
ι ∈ I (up to a topological isomorphism ϕ between Mι and the subalgebra of M generated by f(X)), and 
the required homomorphism h is the composition of the restriction of the canonical projection πι to iX(X)
and ϕ. Uniqueness follows from that if M1(X) and M2(X) are two free Tychonoff Mal’tsev algebras on X
and ij : X → Mj(X) are the corresponding maps iX , then the homomorphisms h1 : M1(X) → M2(X) and 
h2 : M2(X) → M1(X) for which i2 = h1 ◦ i1 and i1 = h2 ◦ i2 must be mutually inverse and hence they are 
topological isomorphisms (see also the proof of Theorem 1 in [10]).

Let us prove (2). According to [19], there exists a Tychonoff topology on the abstract free {μ}-algebra 
Ma(X) on the set X such that the space X is embedded in (Ma(X), τ) as a closed subspace. By definition, 
for the identity homeomorphism f : X → X, there exists a continuous homomorphism h : (Ma(X), τ) →
M3 12 (X) such that f = h ◦ iX(X). This means that iX is a homeomorphic embedding. Clearly, h is an 
isomorphism. Therefore, M3 12 (X) is Ma(X) with a topology finer than τ . Hence X = iX(X) is closed in 
M3 12 (X). This also proves (3).

The proof of assertion (4) repeats the proof of assertion (3) of Theorem 1.
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Assertion (5) is proved along the same lines as assertion (4) of Theorem 1. Any quotient map f : X → M

is surjective; therefore, so is its homomorphic extension h : M3 12 (X) → M . Let M̃(X) be the topological 
quotient of M(X) by kerh, and let h̃ be the corresponding canonical projection. Then the identity map 
ĩ : M̃(X) → M is a continuous isomorphism and h = ĩ ◦ h̃. The map f coincides with the restriction of h
to X. As a map of sets without topology, it also coincides with the restriction of h̃ to X (provided that 
M̃(X) and M are identfied as sets). Since the map f is quotient, it follows that the topology on its image 
M is finest among those with respect to which it is continuous. But h̃|X is continuous with respect to the 
topology of M̃(X); therefore, the topology of M is finer than that of M̃(X), so that ĩ−1 is continuous and 
the identity isomorphism ĩ is topological. Hence the homomorphism h = ĩ ◦ h̃ is quotient. By Theorem B it 
is also open. �

Recall that the free topological group F (X) of a Tychonoff4 space X (the free topological algebra on X in 
the variety of all topological groups) can be represented as the set of reduced words xε1

1 . . . xεn
n , where n ∈ N0

(if n = 0, then the word is empty), εi = ±1 and xi ∈ X for i ≤ n. It is assumed that a homeomorphism 
−1 : X → X−1 between X and its disjoint homeomorphic copy is fixed, and for each x ∈ X, x−1 denotes the 
image of x under this homeomorphism. A word is reduced if it does not contain pairs of neighboring letters 
of the forms xx−1 and x−1x. Multiplication in this group is concatenation followed by reduction, that is, 
deleting all prohibited pairs xx−1 and x−1x. For example, xyz · z−1y−1x = xx. The identity element is the 
empty word.

The free topological group of any Tychonoff space exists and is Tychonoff.
Setting

Fk(X) = {xε1
1 . . . xεn

n : n ≤ k, xi ∈ X, εi = ±1},

we obtain the decomposition

F (X) =
⋃

k≥0

Fk(X).

Each Fk(X) is the image of the space (X ⊕ {e} ⊕X−1)k under the natural multiplication map mk dfined 
by

mk(xε1
1 , . . . , xεn

n ) = xε1
1 · · · · · xεn

n

(here {e} is a singleton disjoint from X and X−1; e represents the identity element of F (X)) and F (X) is 
the image of the topological sum WF (X) =

⊕
k≥0(X⊕{e}⊕X−1)k under the multiplication map m dfined 

as mk on the corresponding summand. The topological sum is the absolutely free {e,−1, ·}-algebra and m
is the canonical projection W (X) → W (X)/∼ = F (X), where ∼ is the smallest congruence determined by 
the standard group identities (associativity and so on). Of course it is very important to know when the 
map m is quotient, i.e., when F (X) is the topological quotient of WF (X). This is the case if and only if all 
mk are quotient and F (X) is the direct (= inductive) limit of its subspaces Fk(X), that is, a set U ⊂ F (X)
is open in F (X) if and only if each intersection U ∩ Fk(X) is open in Fk(X). The problem of describing all 
spaces X for which m is quotient, as well as the problems of describing X for which F (X) has the direct 
limit topology and X for which the maps mk are quotient, is very difficult. So far, only a few sufficient 
conditions have been obtained. For example, it is known that if X is the direct limit of a countable sequence 
of its compact subspaces (such spaces are called kω-spaces), then m is quotient (see [12]).

4 We assume X to be Tychonoff only for simplicity; the considerations remain valid in the general case.
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For free Mal’tsev spaces, there is a similar decomposition. First, note that the absolutely free {μ}-algebra 
W (X) on a topological space X can be constructed by induction as follows:

W0(X) = X,

W1(X) = W0(X) ×W0(X) ×W0(X),

. . .

Wn(X) = 
⊕

i,j,k≥0
max{i,j,k}=n−1 

Wi(X) ×Wj(X) ×Wk(X),

. . . .

Obviously, Wi(X) ∩Wj(X) = ∅ for i 
= j. We set

W (X) =
⊕

i∈N0

Wi(X).

The operation μ on W (X) is dfined by

μ(x, y, z) = (x, y, z) ∈ Wi(X) ×Wj(X) ×Wk(X) ⊂ Wmax{i,j,k}+1(X).

It is easy to see that the map μ : W (X)3 → W (X) is continuous.
Consider the relation R on W (X) dfined by the rule: (x, y) ∈ R if there exists an z ∈ W (X) for which 

x = (z, z, y) or x = (y, z, z). Let ∼ be the smallest congruence containing R (that is, the intersection of 
all such congruences). Algebraically, M(X) is the quotient of W (X) by ∼. Let us denote the canonical 
projection W (X) → W (X)/∼ = M(X) by j.

For k ∈ N0, we set

Mk(X) = j(Wk(X)) and jk = j|Wk
: Wk → Mk.

Note that, for each w = (x, y, z) ∈ Wi(X) and any x0 ∈ X, we have u = (w, x0, x0) ∈ Wi+1(X) and 
j(w) = j(u). Therefore, Mi(X) ⊂ Mk(X) for i ≤ k and Mk is the set of all polynomials in at most 3i
variables in M(X). In particular, X = M0(X) ⊂ M1(X).

Proposition 2. A topological space X is Mal’tsev if and only if X is a retract of M1(X).

Proof. Any Mal’tsev space X is a retract of M(X) by Theorem 1 (3). Clearly, the restriction of a retraction 
to any subspace containing the retract is a retraction as well.

Conversely, if r : M1(X) → X is a retraction, then r ◦ j1 : W1(X) → X is a Mal’tsev operation (recall 
that W1(X) = X3). �

For a Tychonoff X, the set M1(X) is very much like the subset G1(X) = {x ·y−1 ·z ∈ F (X) : x, y, z ∈ X}
of the free group F (X). Moreover, considering F (X) as a Mal’tsev space with the operation μ(u, v, w) = u ·
v−1·w and extending the identity embedding X → F (X) to a continuous homomorphism h : M(X) → F (X), 
we see that h|M1(X) : M1(X) → G1(X) is a continuous bijection. It is dfined by h(j1(x, y, z)) = x · y−1 · z
for x, y, z ∈ X. If this bijection were a homeomorphism, then we could assert that a topological space is 
Mal’tsev if and only if it is a retract of the space G1(X) ⊂ F (X). However, this is not always the case.

Example 2. The following example was constructed in [6]. Let C be the Cantor space, and let {M}∪ {Mα :
α < 2ω} be a partition of C into subspaces homeomorphic to C. To construct such a partition, it suffices 
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to recall that C = {0, 1}N , index all non–identically zero sequences (xn)n∈N ∈ C as (xα
n)n∈N , and set 

M = {(xn)n∈N ∈ C : x2n = 0 for n ∈ N} and Mα = {(xn)n∈N ∈ C : x2n = xα
n for n ∈ N}. Let us 

strengthen the standard topology of the Cantor space by declaring the sets Mα to be closed and open, and 
let us denote the Cantor set with this strengthened topology by X. It was proved in [6] that X is a Mal’tsev 
space but is not a retract of G1(X). By Proposition 2, X is a retract of M1(X). Therefore, M1(X) is not 
homeomorphic to G1(X).

Proposition 3. If X is a Tychonoff space and the multiplication map

m̄3 = m3|X×X−1×X : X ×X−1 ×X → G1(X), (x, y−1, z) �→ x · y−1 · z,

is quotient, then M1(X) is homeomorphic to G1(X). If X is in addition Mal’tsev, then X is a retract of 
G1(X).

Proof. Note that the map h◦j1 : X×X×X → G1(X) coincides with the composition of the homeomorphism 
ϕ : X ×X ×X → X ×X−1 ×X dfined by ϕ(x, y, z) = (x, y−1, z) and the multiplication map m̄3. Thus, if 
m̄3 is quotient, then so is h ◦ j1 and h|M1(X), which implies that M1(X) is homeomorphic to G1(X) in this 
case; moreover, the homeomorphism is compatible with the restriction of the natural ``free group'' Mal’tsev 
operation to M1(X). This, together with Proposition 2, immediately implies that if X is a Mal’tsev space 
for which m̄3 is quotient, then X is a retract of G1(X). �

In [16] it was proved that if the multiplication map m3 : (X ⊕{e}⊕X−1)3 → F3(X) is quotient, then so 
is m̄3.

The following example shows that the condition that m̄3 (or m3) is quotient is only sufficient but not 
necessary for a Tychonoff Mal’tsev space X to be a retract of G1(X).

Example 3. It was shown in [5] that the map m̄3 is not quotient for the space Q of rational numbers with 
the standard topology. However, Q is a group and hence a Mal’tsev space with the group Mal’tsev operation 
μ(p, q, r) = p− q + r. The map rG : G1(Q) → Q dfined by rG(p · q−1 · r) = p− q + r is a retraction.

Note that if X is a Hausdorff compact space, then so are all spaces (X⊕{e}⊕X−1)k, Wk(X), and hence 
Mk(X). Moreover, in this case, M(X) is Tychonoff, so that all Mk(X) are closed subspaces of M(X). This 
implies the following proposition.

Proposition 4. For any Tychonoff space X, all sets Mn(X) are closed in M(X).

Proof. Let bX be any Hausdorff compactfication of X. Then the subalgebra M̃(X) of M(bX) generated 
by X is a topological Mal’tsev algebra containing X as a subspace. It coincides with M(X) as an abstract 
algebra but has a coarser topology. Each set Mn(X) coincides with Mn(bX)∩ M̃(X); therefore, it is closed 
in M̃(X) and, therefore, in M(X). �

Note also that, in the case where X is compact, the maps mk are jk are quotient and M1(X) is home
omorphic to G1(X), so that any compact Mal’tsev algebra is a retract of G1(X). Moreover, any compact 
Hausdorff Mal’tsev algebra is a retract of the whole free group F (X). This is implied by the following 
general theorem.

Theorem 3 ([18] and [6]). If X is a Tychonoff Mal’tsev space such that the free topological group F (X) has 
the direct limit topology with respect to the decomposition F (X) =

⋃
n≥0 Fn(X) and all multiplication maps 

mn are quotient (that is, m is quotient), then X is a retract of F (X).
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Topological spaces being retracts of topological groups are said to be retral. As mentioned above, the 
assumptions of Theorem 3 hold, e.g., for all Tychonoff kω-spaces, that is, direct limits of countably many 
compact subspaces [12]. Therefore, kω-spaces are retral. Some other sufficient conditions for being retral 
are given in [6]. Reznichenko and Uspenskii also proved that the Mal’tsev operation on a pseudocompact 
Mal’tsev space X can be extended to a continuous Mal’tsev operation on βX, which implies that all 
pseudocompact Mal’tsev spaces are retral [17].

Of course, it is also of interest when the free Mal’tsev algebra M(X) is the topological quotient of the 
absolutely free algebra W (X). In [10, Lemma in §5] Mal’tsev essentially proved the following theorem: 
Suppose that X is a kω-space, that is, the direct limit of its compact subspaces Xn, and A is a Hausdorff 
topological algebra of at most countable signature generated by X. Then A decomposes into the union of 
its subspaces of the form p(Xn, . . . , Xn) = {p(x1, . . . , xk) : xi ∈ Xn}, where p is a polynomial on A, and 
all operations of A are continuous in the direct limit topology with respect to this decomposition. It follows 
immediately that, for a Hausdorff kω-space X, M(X) is the direct limit of its subspaces Mk(Xn) and hence of 
Mn(X). Therefore, M(X) is itself a kω-space (which implies, in particular, that it is Tychonoff). It is also easy 
to show that the map j is quotient in this case (because so are all maps p : Xn×· · ·×Xn → p(Xn, . . . , Xn), 
being continuous maps of Hausdorff compact spaces).

Apparently, generalizations of this theorem similar to those in the case of free topological groups can be 
proved, but nothing fundamentally new should be expected. To understand why, consider the sets

Gn(X) = {x1 · x−1
2 · x3 · · · · · x−1

2n · x2n+1 : xi ∈ X} ⊂ F2n+1(X), n ≥ 0,

and G(X) =
⋃

n≥0 Gn(X). There is a natural Mal’tsev operation on G(X), which is dfined by the rule 
μ(a, b, c) = a · b−1 · c. Note that this operation satifies the associativity-type condition

μ(μ(a, b, c), d, e) = μ(a, μ(d, c, b), e) = μ(a, b, μ(c, d, e)), (∗)

so that G(X) is a heap. Heaps differ from groups only in that they have no fixed identity element. Choosing 
any element x∗ ∈ G(X) and setting u ∗ v = μ(u, x0, v), we obtain a multiplication ∗ on G(X). The role of 
the identity element is played by x∗, and the element inverse to u is μ(x∗, u, x∗). Thus, G(X) with the three 
derived operations thus dfined and the topology inherited from F (X) is a topological group.

Proposition 5. Let V be a full topological subvariety of M , i.e., a class of topological Mal’tsev algebras which 
is itself a full topological variety. Then, for any topological space X, the free topological algebra A(X) on 
X in V is a topological quotient of M(X). In particular, if X is Tychonoff, then the heap G(X) (with its 
Mal’tsev operation μ satisfying condition (∗)) is a topological quotient of M(X).

Proof. Let i : X → A(X) be the map in Definition 2 (of the free topological algebra A(X)). The case 
where V contains only the one-element algebra is trivial; thus, we will assume that V contains non-one
element algebras, in which case A(X) is freely generated by i(X) (see Remark 1). Since i is continuous and 
A(X) ∈ M , it follows that there exists a continuous homomorphism h : M(X) → A(X) such that i = h◦ iX . 
It is surjective, because iX is injective (by Theorem 1 (2)) and A(X) is generated by i(X). Therefore, as 
an abstract algebra, A(X) is the quotient M(X)/ kerh. According to the corollary of Theorem B, the 
topological quotient Ã(X) = M(X)/ kerh is a Mal’tsev topological algebra. It is isomorphic to A(X) as an 
abstract algebra (and hence all identities defining the variety V hold in Ã(X), so that Ã(X) ∈ V ), and its 
topology is finer than that of A(X). Thus, the map i treated as a map from X to Ã(X) remains continuous. 
Hence there exists a continuous homomorphism f : A(X) → Ã(X) for which i = f ◦ i. Since i is injective 
and both A(X) and Ã(X) are freely generated by i(X), it follows that f is the identity homomorphism. 
Its continuity implies that the topology of A(X) is finer than that of Ã(X), i.e., these topologies coincide, 
which means that A(X) is a topological quotient of M(X). �



JID:TOPOL AID:109257 /FLA [m3L; v1.372] P.14 (1-15)
14 O.V. Sipacheva, A.A. Solonkov / Topology and its Applications ••• (••••) •••••• 

Proposition 6. If X is a Tychonoff space for which M(X) is the direct limit of its subspaces Mn(X), n ≥ 0, 
then G(X) is the direct limit of its subspaces Gn(X), n ≥ 0.

Proof. According to Proposition 5, G(X) is the image of M(X) under a quotient map. Now the required 
assertion follows from the simple fact that if a space Y is the direct limit of its closed subspaces Yn, n ∈ ω, 
and Z is the image of Y under a quotient map f , then Z is the direct limit of its subspaces f(Yn), n ∈ ω. 
Indeed, given any set A ⊂ Z such that A ∩ f(Yn) is closed in f(Yn) for each n ∈ ω, every intersection 
f−1(A)∩ Yn = f−1(f(A)∩ f(Yn))∩ Yn is closed in f−1(f(Yn)) ⊃ Yn and hence in Yn. Therefore, f−1(A) is 
closed in Y and A is closed in Z (because f is quotient). �
Remark 2. The heap G(X) is freely generated by the set X, because this is algebraically the quotient of 
the free algebra M(X) by the associativity relation. It is seen from Proposition 5 and its proof that, for 
a Tychonoff space X, G(X) is the free topological heap on X. Indeed, if Gf (X) is the free topological 
heap on X (it exists by Theorem 1), then the identity embedding X → G(X) must extend to a continuous 
homomorphism Gf (X) → G(X), and this homomorphism must be an isomorphism, because both G(X) and 
Gf (X) are freely generated by X. However, it was shown in the proof of Proposition 5 that the topology of 
G(X) is strongest among all topologies with respect to which the Mal’tsev operation on G(X) is continuous 
and X is contained in G(X) as a subspace. Therefore, Gf (X) = G(X).

Remark 3. A topological space X is a retract of a topological group if and only if X is a retract of G(X). 
Indeed, G(X) is homeomorphic to a topological group, being a topological heap; this implies sufficiency. To 
prove necessity, suppose that G is a topological group and r : G → X is a retraction. Then r(G) = X is a 
subspace of G, and since G carries the derived associative Mal’tsev (= heap) operation μ(u, v, w) = u·v−1 ·w, 
it follows that the identity homomorphism X → G extends to a μ-homomorphism h : G(X) → G. The 
composition r ◦ h is a retraction G(X) → X.

Acknowledgements

The authors are very grateful to Evgenii Reznichenko for fruitful discussions.

References

[1] M.M. Choban, On the theory of topological algebraic systems, Tr. Mosk. Mat. Obŝ. 48 (1985) 106--149.
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