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spaces but not P -spaces are considered. It is proved, in particular, that the existence 
of a Lindelöf basically disconnected topological group which is not a P -space is 
equivalent to the existence of a Boolean basically disconnected Lindelöf group of 
countable pseudocharacter, that free and free Abelian topological groups of zero-
dimensional non-P -spaces are never F ′-spaces, and that the existence of a free 
Boolean F ′-group which is not a P -space is equivalent to that of selective ultrafilters 
on ω.
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There is a whole hierarchy of classical strong disconnectedness properties: a space X is maximal if it has 
no isolated points and any two disjoint subsets of X have disjoint closures; X is extremally disconnected
if any two disjoint open subsets of X have disjoint closures (or, equivalently, the closure of any open set 
in X is open); and X is basically disconnected if the closure of any cozero set in X is open. This list is 
naturally continued with F - and F ′-spaces: X an F -space if any two disjoint cozero sets are completely 
(=functionally) separated in X, and X is an F ′-space if any two disjoint cozero sets in X have disjoint 
closures. Clearly, each of these properties (except maximality) is a relaxation of the preceding one. Abusing 
terminology, we will refer to all spaces listed above as “strongly disconnected,” although F - and F ′-spaces 
may be connected.
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It is well known that all strong disconnectednesses badly affect homogeneity properties (for example, a 
homogeneous space strongly disconnected in any of the above senses cannot contain an infinite compact 
subspace; see, e.g., [19]). Thus, it is natural to ask whether any of them can coexist with the property of 
being a topological group, which can be regarded as ultimate homogeneity. A ZFC-consistent answer was 
given by Malykhin, who proved the existence of many nondiscrete maximal topological groups under the 
assumption p = c [13]. Thus, the problem is: Does there exist in ZFC a nondiscrete strongly disconnected 
(in one of the above senses) topological group? or, more generally, under what assumptions does there exist 
a nondiscrete strongly disconnected topological group?

For basically disconnected groups, this problem has been more or less solved. As mentioned, in [13]
Malykhin constructed a consistent example of a nondiscrete maximal group under the assumption p = c, 
and in [14] he proved that any maximal group must contain an open countable maximal subgroup. On 
the other hand, in [20] Reznichenko and the author proved that the existence of a countable nondiscrete 
maximal (or even only extremally disconnected) topological group implies the existence of rapid ultrafilters, 
and in [18] Protasov proved that it implies the existence of P -point ultrafilters (see also [26, Corollary 5.21]). 
Thus, the nonexistence of maximal groups is consistent with ZFC.

The existence in ZFC of extremally disconnected groups is Arkhangelskii’s celebrated 1967 problem. It 
has been solved (in the negative) for countable groups [20], but the uncountable case still remains open.

The situation with basically disconnected groups and groups which are F - or F ′-spaces is different. On 
the one hand, clearly, in the class of countable spaces, all strong disconnectednesses (except maximality) 
are equivalent, so that nondiscrete strongly disconnected countable groups cannot exist in ZFC. However, 
since all cozero sets in a P -space are obviously clopen, it follows that any topological P -group is basically 
disconnected (and hence an F - and an F ′-space). Thus, the correct question is: Does there exist in ZFC 
a topological group whose underlying space is basically disconnected (an F -space, an F ′-space) but not 
a P -space? Note that all maximal P -groups are discrete and the existence of a nondiscrete extremally 
disconnected P -group is equivalent to that of measurable cardinals (see [25]).

Yet another distinguishing feature of extremally disconnected groups is that any such group must contain 
an open Boolean subgroup, i.e., a subgroup in which all elements are of order 2 [13]. This reduces the 
existence problem for extremally disconnected groups to the case of Boolean groups. However, basically 
disconnected groups, even those not being P -spaces, do not have this property: for example, if G is a 
nondiscrete countable extremally disconnected group (which consistently exists) and H is an arbitrary 
nondiscrete P -group, then G ×H is basically disconnected [10] but not necessarily contains an open Boolean 
group.

In this paper we show that, nevertheless, the existence problem for paracompact finite-dimensional F -
groups of countable pseudocharacter does reduce to the case of Boolean groups. We also prove that (1) a 
free (or free Abelian) topological group is basically disconnected if and only if it is a P -space; (2) for any 
Tychonoff space X, the following conditions are equivalent: (i) the free topological group of X is an F ′-
space, (ii) the free Abelian topological group of X is an F ′-space, (iii) X is a P -space; and (3) the existence 
of a free Boolean topological F ′-group which is not a P -space is equivalent to the existence of a selective 
ultrafilter on ω.

Throughout the paper by a space we mean a Tychonoff (= completely regular Hausdorff) topological 
space, unless otherwise stated, and assume all topological groups under consideration to be Hausdorff. When 
considering a group, we denote its identity (or zero, if the group is Abelian) element by 1 (by 0).

A subset of a space is a P -set if every Gδ-set containing it is a neighborhood of it. A space in which every 
singleton is a P -set (or, equivalently, all Gδ-sets are open) is called a P -space. By a P -group (an F -group, 
an F ′-group) we mean a topological group whose underlying space is a P -space (an F -space, an F ′-space).

Let X and Y be arbitrary (not necessarily completely regular Hausdorff) topological spaces. A continuous 
surjection p : X → Y is said to be R-quotient if the continuity of any function ϕ : Y → R is equivalent to 
the continuity of the composition ϕ ◦ p, or, in other words, the topology of Y is the finest completely 
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regular topology with respect to which p is continuous. In this case, Y is called an R-quotient space of X
with respect to p, and its topology is called the R-quotient topology. For any topological space X and any 
surjection p : X → Y onto a set Y , there exists a unique R-quotient topology on Y [12]. Clearly, if X and 
Y are Tychonoff spaces and q : X → Y is a quotient map, then the R-quotient topology on Y with respect 
to q coincides with the quotient topology.

We recall that a seminorm, or prenorm, on a group G is a function ‖·‖ : G → R such that ‖1‖ = 0, 
‖gh‖ ≤ ‖g‖ +‖h‖, and ‖g−1‖ = ‖g‖ for all g, h ∈ G. A seminorm which takes the value 0 only at the identity 
element is called a norm. The topology of any topological group is determined by continuous seminorms in 
the sense that all open balls with respect to all continuous seminorms form a base of neighborhoods of the 
identity element (see [1, Sec. 3.3]).

In what follows, we consider the free, free Abelian, and free Boolean topological groups of a space X in 
the sense of Graev [7]; we denote them by FG(X), AG(X), and BG(X), respectively. Given a space X in 
which an arbitrary point x0 is fixed, the group FG(X) is the unique topological group with identity element 
1 = x0 containing X as a subspace and characterized by the property that any continuous map f of X
to any topological group G that takes x0 to the identity element of G can be extended to a continuous 
homomorphism FG(X) → X. The group FG(X) does not depend on the point x0: different choices of x0

yield topologically isomorphic groups.
Graev’s definition differs from Markov’s classical definition of the free topological group F (X) of X

in that the identity element of F (X) does not belong to X and all continuous maps of X to topological 
groups can be extended to continuous homomorphisms of F (X). Graev’s free groups are a generalization 
of Markov’s ones in the sense that any free topological group in the sense of Markov is a free topological 
group in the sense of Graev (F (X) is isomorphic to FG(X ⊕ {e}), where {e} is a singleton).

The free Abelian (Boolean) topological group is defined in a similar way with the difference that it 
is Abelian (Boolean) and only continuous maps to Abelian (Boolean) topological groups are required to 
extend to continuous homomorphisms. Note that algebraically the free Boolean group generated by a set X
is nothing but the set [X]<ω of all finite subsets of X with the operation of symmetric difference. Detailed 
information on free, free Abelian, and free Boolean topological groups can be found in [21,23,24].

We use the standard notations ω for the set of nonnegative integers, R for the set of real numbers, A for 
the closure of a set A, |A| for the cardinality of A, 〈A〉 for the subgroup generated by a subset A of a group, 
Fix f for the fixed point set of a map f , and βf for the continuous extension of a continuous map f of a 
topological space to the Stone–Čech compactification of this space. By ψ(X) we denote the pseudocharacter 
of a space X. A topological group is of countable pseudocharacter if and only if its identity element is a 
Gδ-set.

By dimX (by dim0 X) we denote the covering dimension of X in the sense of Čech (in the sense of 
Katětov), that is, the least integer n ≥ −1 such that any finite open (cozero) cover of X has a finite 
open (cozero) refinement of order n, provided that such an integer exists (if it does not exist, then the 
covering dimension is ∞). It is well known that dim0 X = dim0 βX (see, e.g., [2, Theorem 11.10]) and that 
dimX = dim0 X for normal spaces (see, e.g., [2, Proposition 11.2]). By a zero-dimensional space we mean 
a space in which clopen sets form a base of topology, that is, a space X with indX = 0.

The study of homogeneity in extremally disconnected and F -spaces heavily employs ultrafilters. In this 
paper we use selective, or Ramsey, ultrafilters on ω. One of the equivalent definitions of a Ramsey ultrafilter 
U is as follows (see [11, Proof of Lemma 9.2]): for any family {An : n ∈ ω}, where An ∈ U , there exists 
its diagonal quasi-intersection in U , that is, a set D ∈ U such that j ∈ Ai whenever i, j ∈ D and i < j. 
Both the existence and the nonexistence of selective ultrafilters are consistent with ZFC [11, p. 76]. We also 
mention rapid ultrafilters (their other names are semi-Q-points and weak Q-points); for our considerations, 
it only matters that the nonexistence of rapid ultrafilters is consistent with ZFC [16].

We begin with the following simple observation.
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Remark 1. If there exist no rapid ultrafilters, then all countable subsets of any F ′-group are discrete (and 
closed).

Indeed, let G be an F ′-group, and let X ⊂ G be countable. Then H = 〈X〉 is a countable subgroup of 
G. If A and B are any disjoint open subsets of H, then, according to [6, 3B.4], there are disjoint cozero sets 
U ⊃ A and V ⊃ B in G. We have A∩B = ∅, because G is an F ′-space. Thus, H is a countable extremally 
disconnected group, and the existence of a nondiscrete group with these properties implies that of rapid 
ultrafilters [20].

In what follows, we use the facts and observations listed below. All of them are either well known or 
obvious (or both).

Fact 1. Any countable union of cozero sets is a cozero set [6, 1.14].

Fact 2. A space X is an F -space if and only if so is βX [6, 14.25].

Fact 3. Extremal disconnectedness, basic disconnectedness, and the property of being an F ′-space are pre-
served by open continuous maps. (This easily follows from the equality A = f(f−1(A)), which holds for any 
open map f : X → Y and any A ⊂ Y .)

Fact 4. If G is a topological group, H is its subgroup, and G/H is the quotient space of left or right cosets, 
then the canonical quotient map G → G/H is open (see [1]).

Fact 5. The free Abelian topological group AG(X) is the topological quotient of FG(X) by the commutator 
subgroup, and the free Boolean topological group BG(X) is the topological quotient of AG(X) by the 
subgroup AG(2X) of squares. (For the case of AG(X), see [15]. The case of BG(X) is similar.)

Fact 6. If Y is an R-quotient space of X, then the groups FG(Y ), AG(Y ), and BG(Y ) are topological 
quotients of FG(X), AG(X), and BG(X), respectively (this was proved in [17] for the case of the free 
topological group; the remaining cases are similar).

Fact 7. For any space X, the following conditions are equivalent:

(1) X is a P -space;
(2) FG(X) is a P -space;
(3) AG(X) is a P -space;
(4) BG(X) is a P -space.

(To show (1), it suffices to note that if X is a P -space, then all Gδ-sets in FG(X) form a group topology on 
the free group which is finer than the topology of FG(X) but still induces the original topology of X on X. 
Since the topology of FG(X) is the finest group topology with the latter property, it follows that all Gδ-sets 
are open in FG(X). Obviously, the property of being a P -space is hereditary. The assertions about AG(X)
and BG(X) are proved in a similar way.)

Remark 2. If a topological group G is not a P -space, then there exist neighborhoods Ui, i ∈ ω, of the 
identity element such that Un+1 · Un+1 ⊂ Un and Un = U−1

n for all n ∈ ω and the identity element is not 
in the interior of the intersection H =

⋂
n∈ω Un. The set H is closed (because if x /∈ Un for some n ∈ ω, 

then x ·Un+1 ∩Un+1 = ∅), and this is a subgroup (by construction). Clearly, any subgroup with nonempty 
interior must be open; therefore, H is a nowhere dense closed subgroup of G.
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If, in addition, G is Lindelöf, then, for each n, there exist neighborhoods Vn,i, i ∈ ω, of the identity 
element with the following properties: (a) Vn,0 ⊂ Un, Vn,i+1 · Vn,i+1 ⊂ Vn,i, and Vn,i = V −1

n,i for all n ∈ ω; 
(b) for any x ∈ G and any i ∈ ω, there exists a j ∈ ω such that x−1 ·Vn,j ·x ⊂ Vn,i (see [1, Propositions 3.4.6 
and 3.4.10, Lemma 3.4.14]). Setting Vn =

⋂
k,i≤n Vk,i for n ∈ ω, we obtain a sequence of neighborhoods Vn

of the identity element such that Vn+1 · Vn+1 ⊂ Vn and Un = U−1
n for all n ∈ ω and N =

⋂
n∈ω Vn is a 

nowhere dense closed normal subgroup of G.

The following theorem is the first main result of this paper.

Theorem 1. Any paracompact topological F -group G such that dimG < ∞ and ψ(G) ≤ ω contains an open 
Boolean subgroup with the same properties.

Proof. Consider the automorphism h : G → G defined by h(x) = x−1 for x ∈ G. Extending it to βG, we 
obtain an autohomeomorphism βh : βG → βG which takes βG \G to βG \G. Since dim0 βG < ∞ and βG is 
a compact F -space, it follows that Fix βh is a P -set in βG [9]. In particular, any zero set in βG containing 
Fix βh is a neighborhood of Fix βh.

Using the assumption ψ(G) ≤ ω, we can find a sequence (Un)n∈ω of neighborhoods of 0 in G such that ⋂
n∈ω Un = {0}, Un+1 · Un+1 ⊂ Un, and Un = U−1

n for all n ∈ ω. There exists a norm ‖·‖ on G such that

{x ∈ G : ‖x‖ < 1/2n} ⊂ Un ⊂ {x ∈ G : ‖x‖ ≤ 2/2n}

for every n ∈ ω (see, e.g., [8] or [1, Lemma 3.3.10]). Consider the continuous function ϕ : G → R defined by 
ϕ(x) = ‖x2‖ for x ∈ G. Note that Fix h = ϕ−1({0}).

Let F = ϕ−1({0}), and let C = G \F . Since C is a cozero set (and hence an Fσ-set) in the paracompact 
F -space G, it follows that C is paracompact [5, Theorem 5.1.28] and C∗-embedded in G [6, Theorem 14.25]
(the latter implies that βC is the closure C of C in βG). According to Corollary 11.21 in [2], we have 
dimC < ∞. Therefore, the extension β(h|C) of the fixed-point free autohomeomorphism h|C to C = βC

has no fixed points [4]. It follows that F is open in G.
Thus, F is an open neighborhood of 1 in G. Let U be an open neighborhood of 1 such that U2 ⊂ F . 

Then the subgroup 〈U〉 generated by U is Boolean. Indeed, if x, y ∈ 〈U〉, then x, y, x · y ∈ F , whence 
x · y = y−1 · x−1 = y · x. Thus, the subgroup 〈U〉 is Abelian. Since it is generated by elements of order 2 
and has nonempty interior, it easily follows that 〈U〉 is an open (and hence clopen) Boolean subgroup of G. 
It remains to note that all properties of G listed in the statement of the theorem are inherited by clopen 
subspaces. �
Corollary 1. The existence of a nondiscrete paracompact topological F -group G with dimG < ∞ and ψ(G) ≤
ω is equivalent to the existence of a nondiscrete Boolean topological group with the same properties.

Theorem 2. Any Lindelöf basically disconnected topological group either is a P -space or has a nondiscrete 
topological quotient of countable pseudocharacter containing an open basically disconnected Boolean sub-
group.

Proof. Let G be a Lindelöf basically disconnected group. If G is not a P -space, then by Remark 2 G

contains a closed nowhere dense Gδ normal subgroup N =
⋂

n∈ω Vn, where Vi, i ∈ ω, are neighborhoods of 
the identity element such that Vn+1 · Vn+1 ⊂ Vn and Vn = V −1

n for all n ∈ ω. We have N =
⋂

n∈ω(Vn ·N). 
Indeed, if x ∈ G \ N , then x /∈ Vn for some n, so that x /∈ Vn+1 · Vn+1 ⊃ Vn+1 · N . By Fact 4 the 
canonical quotient map h : G → G/N is open, and by Fact 3 the quotient G/N is basically disconnected. It 
is nondiscrete, because N is nowhere dense in G, and
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⋂
n∈ω

h(Vn) = h
(⋂
n∈ω

h−1(Vn)
)

= h
(⋂
n∈ω

(Vn ·H)
)

= h(H) = {1} in G/N.

Therefore, ψ(G/N) ≤ ω. Finally, G/N is Lindelöf and dimG/N = 0, because the Stone–Čech compactifi-
cation of any basically disconnected space is obviously basically disconnected and zero-dimensional. Thus, 
G/N satisfies all assumptions of Theorem 1. �
Corollary 2. The existence of a Lindelöf basically disconnected group which is not a P -space is equivalent to 
the existence of a nondiscrete Lindelöf Boolean basically disconnected group of countable pseudocharacter.

Our next theorem is concerned with free, free Abelian, and free Boolean topological F ′-groups. Its proof 
is based on the following statements.

Proposition 1. Suppose that a space X contains clopen subsets Un, n ∈ ω, such that Un+1 ⊂ Un for n ∈ ω

and C =
⋂

n∈ω Un is a nonopen nonempty set. Then there exists a nondiscrete countable space Y such that 
the groups FG(Y ), AG(Y ), and BG(Y ) are topological quotients of FG(X), AG(X), and BG(X), respectively.

Proof. We set C0 = X \ U0 and Cn = Un−1 \ Un for n = 1, 2, . . . and let Y be the image of X under the 
quotient map contracting C and each Cn, n = 0, 1, . . . , to a point. Clearly, Y is a countable completely 
regular Hausdorff space with only one nonisolated point (the image of C). It remains to recall Fact 6. �
Proposition 2. Let X be a space, and let x0 and y0 be non-P -points in X. Then there exists a Tychonoff 
space Y and an R-quotient map f : X → Y such that Y is a subset of R endowed with a topology finer than 
that induced by the Euclidean metric of R and the points f(x0) and f(y0) are non-P -points in Y . Moreover, 
if x0 �= y0, then f can be chosen so that f(x0) < f(y0).

Proof. Using the complete regularity of X, it is easy to construct a continuous function f : X → R such 
that f(x0) < f(y0), x0 does not belong to the interior of f−1({f(x0)}), y0 does not belong to the interior 
of f−1({f(y0)}), and if x0 �= y0, then f(x0) < f(y0). Let Y be the set f(X) endowed with the R-quotient 
topology with respect to f . Since this is the finest completely regular topology with respect to which f is 
continuous, it follows that the topology of Y is Tychonoff and finer than that induced from R. The points 
f(x0) and f(y0) are not isolated in Y , because their preimages are not open in X, but they are Gδ-points. 
Therefore, both of them are non-P -points in Y . �
Theorem 3.

(1) Any space X for which BG(X) is an F ′-group contains at most one non-P -point.
(2) If a space X is not a P -space and BG(X) is an F ′-group, then there exists a countable space Z with 

a unique nonisolated point such that Z is an R-quotient image of X and BG(Z) is an extremally 
disconnected quotient of BG(X).

Proof. (1) Suppose that x0 and y0 are two different non-P -points of X. Let Y and f : X → Y be as in 
Proposition 2. According to Facts 4 and 6 the group BG(Y ) is an open image of BG(X), and by Fact 3 it 
is an F ′-group.

We denote by d the continuous metric on Y induced by the Euclidean metric and by ‖·‖d the Graev 
extension of d to a continuous seminorm on BG(Y ) (see [23]). Let d(f(x0), f(y0)) = a. We have a > 0. The 
sets

U = {x ∈ BG(Y ) : ‖f(x0) − x‖d < a/2}
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and

V = {x ∈ Bg(Y ) : ‖f(x0) − x‖d > a/2}

are disjoint cozero sets in BG(Y ). Therefore, they have disjoint closures.
Let z0 ∈ R be the midpoint between f(x0) and f(y0), that is, z0 = f(x0) + a/2 = f(y0) − a/2. We set

Ũ = {y ∈ Y : f(x0) − a/2 < y < z0} and Ṽ = {y ∈ Y : z0 < y < f(y0) + a/2}.

Note that U ∩Y = Ũ and V ∩Y = Ṽ . Therefore, either z0 /∈ U ∩Y (in which case the sets {y ∈ Y : y < z0}
and {y ∈ Y : z0 ≤ y} are disjoint closed subsets of Y covering Y ) or z0 /∈ V ∩ Y (in which case such sets 
are {y ∈ Y : y ≤ z0} and {y ∈ Y : z0 < y}). In either case, Y has a clopen subset W containing f(x0)
and missing f(y0). Thus, Y is the topological sum W ⊕ Y \ W , whence BG(Y ) = BG(W ) × BG(Y \ W )
[23, Proposition 7]. We have shown that the F ′-space BG(Y ) is the product of two spaces each of which 
contains a non-P -point and hence is not a P -space. This contradicts the main theorem of [3].

(2) Let X be a non-P -space for which the free Boolean topological group BG(X) is an F ′-space. By 
Proposition 2 X has a nondiscrete R-quotient Y of countable pseudocharacter. By Facts 3, 4, and 6 BG(Y )
is an F ′-group. Since the pseudocharacter of Y is countable, it follows from assertion (1) that Y has only 
one nonisolated point, and this point is not a P -point. Proposition 1 implies the existence of a nondiscrete 
countable space Z such that BG(Z) is a topological quotient of BG(Y ) and hence an F ′-group; therefore, 
BG(Z) is extremally disconnected. �
Corollary 3. The existence of a free Boolean topological F ′-group which is not a P -space is equivalent to the 
existence of a selective ultrafilter on ω.

Proof. If there exists a non-P -space X for which BG(X) is an F ′-group, then, by Theorem 3 (2), there 
exists a nondiscrete countable space Z for which BG(Z) is extremally disconnected. According to [22], the 
existence of a nondiscrete free Boolean extremally disconnected group implies that of a selective ultrafilter 
on ω.

Conversely, it is well known (see, e.g., [26, Theorem 5.1] or [24, Theorem 8.2]) that the existence of a 
selective ultrafilter on ω implies the existence of a nondiscrete countable free Boolean topological group 
which is an extremally disconnected space and hence an F ′-space. Clearly, being countable and nondiscrete, 
it cannot be a P -space. �
Theorem 4. For any space X, the following conditions are equivalent: (i) the free topological group of X is 
an F ′-space, (ii) the free Abelian topological group of X is an F ′-space, (iii) X is a P -space.

Proof. Let X be a non-P -space. In view of Facts 3–5 it suffices to check that AG(X) is not an F ′-group. 
Assume the contrary. Then BG(X) is an F ′-group by Fact 5. By Theorem 3 (2) there exists a nondis-
crete countable R-quotient Z of X. By Fact 6 AG(Z) is an F ′-group. It is extremally disconnected, being 
countable. According to Malykhin’s theorem, any extremally disconnected group contains an open Boolean 
subgroup [13]. However, the only Boolean subgroup of any free Abelian group is trivial. Thus, AG(Z) must 
be discrete, which contradicts the nondiscreteness of Z. �

The author is most grateful to Evgenii Reznichenko for very fruitful discussions.
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