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An ultrafilter p on ω is said to be discrete if, given any function f : ω → X to any 
completely regular Hausdorff space, there is an A ∈ p such that f(A) is discrete. 
Basic properties of discrete ultrafilters are studied. Three intermediate classes of 
spaces R1 ⊂ R2 ⊂ R3 between the class of F -spaces and the class of van Douwen’s 
βω-spaces are introduced. It is proved that no product of infinite compact R2-spaces 
is homogeneous; moreover, under the assumption d = c, no product of βω-spaces is 
homogeneous.
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In [1] Frolík proved the nonhomogeneity of the Stone–Čech remainder ω∗ = βω \ ω of ω by noticing 
that if two discrete sequences in ω∗ converge to the same point x ∈ ω∗ along ultrafilters p and q, then p
and q are compatible in the Rudin–Frolík order. The idea is quite natural: if p, q ∈ ω∗ are incompatible 
and D = {dn : n ∈ ω} is a countable discrete subset of ω∗, then there cannot exist a homeomorphism 
h : ω∗ → ω∗ taking q-limn dn to p-limn dn, because if it existed, then (dn)n∈ω and (h(dn))n∈ω would be 
discrete sequences converging to the same point p-limn dn along p and q, respectively.

Frolík’s idea of proving nonhomogeneity by considering orderings of ultrafilters was developed by Kunen. 
One of the key ingredients in his proof of the inhomogeneity of any product of infinite compact F -spaces is 
the following lemma on the Rudin–Keisler comparability of ultrafilters.
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Kunen’s lemma ([2, Lemma 4]). Let p, q ∈ ω∗ be Rudin–Keisler incomparable weak P -points, and let X be 
any compact F -space. Suppose that x ∈ X, (dm)m∈ω is a discrete sequence of distinct points in X, (en)n∈ω

is any sequence of points in X, and x = p-limm dm = q-limn en. Then {n : en = x} ∈ q.

The present paper arose from an attempt to extend Kunen’s lemma and, thereby, his result on the 
inhomogeneity of product spaces to other classes of spaces. This can be done by looking for larger classes 
for which Kunen’s argument still works or by strengthening the assumptions on the ultrafilters p and q. In [3]
we introduced new classes R1, R2, and R3 of topological spaces, which lie strictly between the classes of F -
and βω-spaces, and proved that Kunen’s lemma remains valid for R2-spaces. In this paper we mainly focus 
on special ultrafilters, namely, discrete ones, which are especially interesting in the context of homogeneity, 
because the convergence of any sequence along a discrete ultrafilter reduces to the convergence of a discrete 
subsequence.

1. Preliminaries

Throughout the paper by a space we mean a completely regular Hausdorff topological space.
Given a space X and A ⊂ X, by A we denote the closure of A in X and by |A|, the cardinality of A. 

Recall that sets A, B ⊂ X are separated if A ∩ B = A ∩ B = ∅. A subspace A ⊂ X is C∗-embedded in X
if any continuous function f : A → [0, 1] has a continuous extension f̂ : X → [0, 1]. We say that a sequence 
(xn)n∈ω of points of a space X is discrete if its range {xn : n ∈ ω} is a discrete (not necessarily closed) 
subspace of X.

Every space X has Stone–Čech compactification βX; this is a compact space in which X is densely 
embedded so that any continuous map f : X → K to a Hausdorff compact space K has a continuous 
extension βf : βX → K.

We use the standard notation R for the real line with the usual topology, Q for the space of rationals, 
ω for the set of nonnegative integers (endowed with the discrete topology when appropriate), βω for the 
Stone–Čech compactification of ω, and ω∗ for the Stone–Čech remainder βω \ ω. It is well known that βω
is nothing but the space of ultrafilters on ω endowed with the topology generated by the base consisting of 
sets of the form A = {p ∈ βω : A ∈ p}, where A ⊂ ω; each n ∈ ω is identified with the principal ultrafilter 
p(n) = {A ⊂ ω : n ∈ A}, so that ω∗ is precisely the subspace of nonprincipal ultrafilters and ω is embedded 
in βω as a dense open discrete subspace. Moreover, for each A ⊂ ω, the set A defined above is indeed the 
closure of A in βω. Note also that an ultrafilter is nonprincipal if and only if all of its elements are infinite.

The limit of a sequence (xn)n∈ω in a space X along an ultrafilter p on ω, or the p-limit of (xn)n∈ω, is 
a point x ∈ X, denoted by p-limn xn, such that, for any neighborhood U of x, the set {n ∈ ω : xn ∈ U}
belongs to p. We say that x is the nontrivial p-limit of (xn)n∈ω if {n ∈ ω : xn = x} /∈ p. A sequence may have 
no p-limit, but if its p-limit exists, then it is unique (recall that we assume all spaces under consideration 
to be Hausdorff). Moreover, if X is compact, then any sequence (xn)n∈ω in X has precisely one p-limit for 
any p ∈ βω. To see this, it suffices to consider the continuous extension βf : βω → X of the map f : ω → X

defined by f(n) = xn for n ∈ ω and apply the following remark.

Remark 1. (i) Any ultrafilter p ∈ βω is the p-limit of the sequence (n)n∈ω in βω: p = p-limn n.
(ii) Let f : X → Y be a continuous map of spaces X and Y , and let x, xn ∈ X for n ∈ ω. If p ∈ βω and 

x = p-limn xn, then f(x) = p-limn f(xn).
(iii) Suppose that p ∈ ω∗, ϕ : ω → ω is any function, (xn)n∈ω and (yk)k∈ω are two sequences in a space 

X, and there is a P0 ∈ p such that yϕ(n) = xn for n ∈ P0. If x = p-limn xn, then x = βϕ(p)-limk yk. Indeed, 
for any neighborhood U of x, we have {n ∈ ω : xn ∈ U} ∈ p. Therefore, {n ∈ P0 : yϕ(n) ∈ U} = P ∈ p. 
Finally, {k ∈ ω : yk ∈ U} ⊃ ϕ(P ) ∈ βϕ(p).
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Any function f : ω → ω can be treated as a map ω → βω and, therefore, has a continuous extension 
βf : βω → βω. This extension is explicitly described as

βf(p) = {A ⊂ ω : f−1(A) ∈ p}, p ∈ βω

(see [4, Lemma 3.30]). Ultrafilters p and q on ω are said to be equivalent if there exists a bijection ϕ : ω → ω

such that βϕ(p) = q.

Remark 2. Ultrafilters p and q on ω are equivalent if and only if there exists a function f : ω → ω and an 
A ∈ p such that βf(p) = q and the restriction f � A of f to A is one-to-one. Indeed, if such f and A exist, 
then there is a B ⊂ A, B ∈ p, for which |ω \ B| = |ω \ f(B)| = ω, and any bijection g : ω → ω extending 
f � B witnesses the equivalence of p and q.

The extension βf of a function f : ω → K to an arbitrary Hausdorff compact space K has a simple 
description as well: the image under βf of an ultrafilter p is defined by {βf(p)} =

⋂
A∈p f(A) (see [4, 

Theorem 3.27]).

2. Orders on βω

There are several natural order relations on classes of equivalent ultrafilters; we will consider Rudin–
Keisler, Rudin–Blass, and Rudin–Frolík orders. For detailed information about these and some other orders 
on βω, see, e.g., [4–6] and references therein.

The Rudin–Keisler order �RK on βω is defined by declaring that, for p, q ∈ βω, p �RK q if and only if 
there exists a function f : ω → ω such that βf(q) = p.

The Rudin–Blass order �RB on βω is defined by declaring that, for p, q ∈ βω, p �RB q if and only if 
there exists a finite-to-one function f : ω → ω such that βf(q) = p.

The Rudin–Frolík order �RF on βω is defined by declaring that, for p, q ∈ βω, p �RF q if and only if 
there exists an injective function ϕ : ω → βω such that ϕ(ω) is discrete and βϕ(p) = q.

(Note that the map ϕ in the last definition and the maps f in the two preceding ones act on the ultrafilters 
in opposite directions.)

It is known that all these relations are indeed orders on the equivalence classes of ultrafilters. The 
relation �RK is largest. Indeed, the implication p �RB q =⇒ p �RK q is obvious, and if p �RF q, ϕ is 
the corresponding function in the definition of �RF, and Ai, i ∈ ω, are disjoint subsets of ω determining 
disjoint neighborhoods Ai of the points ϕ(i) in βω, then the function f : ω → ω defined by setting f(n) = i

if n ∈ Ai and f(n) = 0 if n /∈
⋃

Ai witnesses that p �RK q.

Remark 3. Each nonprincipal ultrafilter on ω has at most 2ω �RK-predecessors (because the number of 
functions ω → ω is 2ω).

Proposition 1. For p, q ∈ βω, p �RF q if and only if q is the p-limit of a discrete sequence (xn)n∈ω of distinct 
points in βω.

Proof. According to Remark 1, we have q = p-limn xn if and only if q = βϕ(p) for ϕ : ω → βω defined by 
ϕ(n) = xn for n ∈ ω. Therefore, if {xn : n ∈ ω} is discrete and consists of distinct points, then q = p-limn xn

if and only if the map ϕ witnesses that p �RF q. �
The following theorem was proved by M. E. Rudin in [7] (see also [5, Theorem 16.16]).

Theorem 1 ([7]). The set of all �RF-predecessors of any ultrafilter p ∈ βω is totally �RF-ordered.
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Recall that a point x in a topological space X is a P -point if the intersection of any countable family of 
neighborhoods of x is also a neighborhood of x, x is a weak P -point if x /∈ D whenever D is a countable 
subset of X \ {x}, and x is a discretely weak P -point if x /∈ D whenever D is a countable discrete subset 
of X \ {x}. It is well known that p ∈ ω∗ is a P -point in ω∗ if, given any f : ω → ω, there exists an A ∈ p

such that the restriction of f to A is either finite-to-one or constant, or, equivalently, given any sequence 
(An)n∈ω of elements of p, there exists an A ∈ p such that A ⊂∗ An (i.e., |A \ An| < ω) for each n ∈ ω. 
The existence of weak P -points in ω∗ can be proved in ZFC [8], while the existence of P -points in ω∗ is 
independent of ZFC (see, e.g., [9]). Note that there exist discretely weak P -points in ω∗ which are not weak 
P -points: an example of such a point is any lonely point in the sense of Simon, whose existence in ω∗ was 
proved by Verner in [10]. We also mention that the non-discretely weak P -points in ω∗ are precisely those 
of van Mill’s type A1 [11].

Related types of ultrafilters are selective and Q-point ultrafilters (see, e.g., [12], [13]). An ultrafilter p ∈ ω∗

is said to be selective, or Ramsey, if, given any f : ω → ω, there exists an A ∈ p such that the restriction of 
f to A is either one-to-one or constant, or, equivalently, given any decreasing sequence (An)n∈ω of elements 
of p, there exists an A ∈ p such that |A ∩ (An \ An+1)| � 1 for each n ∈ ω. An ultrafilter p ∈ ω∗ is a 
Q-point, or rare, ultrafilter if, given any finite-to-one function f : ω → ω, there exists an A ∈ p such that 
the restriction of f to A is one-to-one.

The proof of the following theorem is essentially contained in [5].

Theorem 2. (i) An ultrafilter p ∈ ω∗ is minimal in the Rudin–Keisler order if and only if p is selective.
(ii) An ultrafilter p ∈ ω∗ is minimal in the Rudin–Blass order if and only if p is a Q-point.
(iii) An ultrafilter p ∈ ω∗ is minimal in the Rudin–Frolík order if and only if p is a discretely weak P -point 

in ω∗.

Proof. Assertion (i) is Theorem 9.6 of [5]. Assertion (ii) (as well as (i)) easily follows from definitions and 
Remark 2. Assertion (iii) is Lemma 16.14 of [5]. �
Corollary 1. If p, q ∈ ω∗, (xn)n∈ω is a discrete sequence of distinct points in ω∗, and q = p-limn xn, then p
is not a discretely weak P -point.

Proof. By Proposition 1 p �RF q. If p is a discretely weak P -point, then p and q are equivalent by Theo-
rem 2 (iii), so that q is a discretely weak P -point as well. But a discretely weak P -point cannot be limit for 
a discrete set. �

In the class of P -points �RK coincides with �RB. Moreover, the following assertion holds.

Proposition 2. If p, q ∈ ω∗ and p is a P -point, then q �RK p if and only if q �RB p.

Proof. Only the ‘only if’ part needs to be proved. Suppose that q �RK p and let f : ω → ω be a function 
for which βf(p) = q. Take A ∈ p such that the restriction of f to A is finite-to-one and both sets ω \A and 
ω \ f(A) are infinite. Let ϕ be any bijection between ω \A and ω \ f(A). The function g : ω → ω coinciding 
with f on A and with ϕ on ω \A is finite-to-one. Obviously, βg(p) = q. Therefore, q �RB p. �

The following amazing theorem of van Mill shows that the relation �RF is very much smaller than �RK.

Theorem 3 ([6, Theorem 4.5.1]). There is a finite-to-one function π : ω → ω such that, given any p ∈ ω∗, 
there is a weak P -point q ∈ ω∗ for which βπ(q) = p (and hence p �RB q and p �RK q).

It is well known that there exist 22ω �RK-incomparable (and hence �RB- and �RF-incomparable) ul-
trafilters in ω∗ [14]. However, the problem of the existence of �RK-incompatible (i.e., having no common 
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�RK-predecessor) ultrafilters is much more complicated. On the one hand, CH implies the existence of 22ω

nonequivalent �RK-minimal ultrafilters in ω∗ [15, Sec. 8, Corollary 8]. Clearly, such ultrafilters cannot be 
compatible in any of the orders �RK, �RB and �RF. On the other hand, it is consistent with ZFC that all 
ultrafilters in ω∗ are nearly coherent, i.e., even �RB-compatible [16]. Finally, there exist (in ZFC) at least 
2ω nonequivalent (and even �RK-incomparable) weak P -points in ω∗ [8], and such points are �RF-minimal 
and hence �RF-incompatible.

3. Discrete ultrafilters

In [17] Baumgartner introduced the notion of an I-ultrafilter and related classes of ultrafilters.

Definition 1 ([17]). Let I be a family of subsets of a set X such that I contains all singletons and is closed 
under taking subsets. An ultrafilter p on ω is said to be an I-ultrafilter if, for any f : ω → X, there is an 
A ∈ p such that f(A) ∈ I.

In the case where X = R and I is the family of all discrete (scattered, measure zero, nowhere dense) 
subsets of R, an I-ultrafilter is said to be discrete (respectively, scattered, measure zero, nowhere dense).

Remark 4. Baumgartner also proved that if I = {Y ⊂ 2ω : Y is finite or has order type of ω or ω + 1}, 
then the nonprincipal I-ultrafilters are exactly the P -points of ω∗. (Here 2ω is the Cantor set with the 
lexicographic order.) This immediately implies that any P -point is discrete.

Thus, we have

P -point =⇒ discrete =⇒ scattered =⇒ measure zero =⇒ nowhere dense.

Under Martin’s axiom none of these implications reverses [17]. It makes no sense to speak about their 
reversibility without additional set-theoretic assumptions, because the nonexistence of nowhere dense ultra-
filters is consistent with ZFC [9].

Considering families I of discrete subsets of other spaces X and imposing assumptions on f : ω → X, we 
obtain potentially different classes of discrete-like ultrafilters.

Definition 2. Let X be a space. We say that an ultrafilter p on ω is X-discrete (finitely-to-one X-discrete, 
injectively X-discrete) if, for any (respectively, for any finite-to-one, for any one-to-one) function f : ω → X, 
there is an A ∈ p such that f(A) is discrete in X. For X = R, we write simply “discrete” instead of 
“R-discrete.”

Remark 5. Note that any ω∗-discrete (in any sense) ultrafilter p is βω-discrete (in the same sense). Indeed, 
take any f : ω → βω. If A = f−1(ω) ∈ p, then f(A) ⊂ ω ⊂ βω is discrete; otherwise B = ω \A ∈ p, and we 
can fix any distinct qn ∈ ω∗\f(B), n ∈ ω, and consider the map g : ω → ω∗ defined by g(n) = f(n) for n ∈ B

and g(n) = qn for n ∈ A. Let C ∈ p be such that g(C) is discrete. Then C ∩B ∈ p and f(C ∩B) = g(C ∩B)
is discrete.

Injectively discrete and injectively ω∗-discrete ultrafilters were considered in [18] (where they were called 
simply “discrete” and “ω∗-discrete”). The following proposition is similar to Proposition 12 of [18].

Proposition 3. Every discrete (finitely-to-one discrete, injectively discrete) ultrafilter is X-discrete (respec-
tively, finitely-to-one X-discrete, injectively X-discrete) for any space X.

Proof. Let p be a discrete ultrafilter, and let f : ω → X be any map. We set xn = f(n) for n ∈ ω. For 
each pair (xk, xm) of different points in f(ω), take a continuous function f(k,m) : f(ω) → {0, 1} such that 
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f(k,m)(xk) = 0 and f(k,m)(xm) = 1 (it exists because f(ω) is countable). The diagonal g = Δ{f(k,m) : xk �=
xm} is a one-to-one continuous map of f(ω) to the Cantor set 2ω ⊂ R. Since p is discrete, it follows that 
there is an A ∈ p for which g(f(A)) is discrete. Thus, f(A) admits a one-to-one continuous map onto a 
discrete space; therefore, f(A) is discrete. For finitely-to-one and injectively discrete ultrafilters, the proof 
is the same. �

Thus, any discrete ultrafilter is X-discrete for any space X, but it is unclear whether, say, an ω∗-discrete 
ultrafilter is discrete. The questions of whether injective discreteness implies finite-to-one discreteness and 
whether finite-to-one discreteness implies discreteness are not clear either, although the answer is unlikely 
to be positive. However, the nonexistence of injectively and finitely-to-one discrete ultrafilters, as well as 
that of discrete ones, in consistent with ZFC, because it follows from the nonexistence of nowhere dense 
ultrafilters. The following argument was kindly communicated to the authors by Taras Banakh.

Proposition 4. The nonexistence of nowhere dense ultrafilters implies the nonexistence of injectively discrete 
ultrafilters.

Proof. Let us say that an ultrafilter p on ω is injectively nowhere dense if, for any one-to-one function 
f : ω → R, there is an A ∈ p such that f(A) is nowhere dense. We will prove that the nonexistence of 
nowhere dense ultrafilters implies that of injectively nowhere dense ultrafilters.

Suppose that there exist no nowhere dense ultrafilters but there exists and injectively nowhere dense 
ultrafilter p. Since p is not nowhere dense, it follows that we can find a function f : ω → (0, 1) ∼= R such 
that, for any A ∈ p, there exists an open set U ⊂ (0, 1) in which U∩f(A) is dense. Take an injective function 
g : ω → R such that |g(n) −f(n)| < 2−n for all n. Since p is injectively nowhere dense, there exists an A ∈ p

whose image g(A) is nowhere dense in R. On the other hand, the choice of f ensures that, for some open 
set U in R, the intersection U ∩ f(A) is dense in U . Thus, the set U ∩ f(A) has no isolated points. The 
condition |g(n) − f(n)| → 0 implies that U ∩ g(A) is dense in U , and hence g(A) cannot be nowhere dense 
in R. �
Proposition 5. (i) If p ∈ βω is X-discrete for some space X and q �RK p, then q is X-discrete.

(ii) If p ∈ βω is finitely-to-one X-discrete for some space X and q �RB p, then q is finitely-to-one 
X-discrete.

(iii) If q ∈ βω is ω∗-discrete and p is the nontrivial q-limit of some sequence (xn)n∈ω in βω, then there 
exists an r ∈ βω such that r �RK q and r �RF p. Moreover, p = r-limn xkn

for some discrete subsequence 
(xkn

)n∈ω of (xn)n∈ω consisting of distinct points.
(iv) If q ∈ βω is injectively ω∗-discrete, then q �RF p if and only if p is the q-limit of some sequence 

(xn)n∈ω of distinct points of βω.

Proof. The first two assertions are obvious, as well as the ‘only if’ part of the fourth one.
Let us prove (iii). Suppose that (xn)n∈ω is any sequence in βω and p is the nontrivial q-limit of (xn)n∈ω. 

If the ultrafilter q is principal, then there is nothing to prove, so we will assume that q ∈ ω∗. Recall that, 
by Remark 5, the ω∗-discreteness of the ultrafilter q implies its βω-discreteness. Let A ∈ q be such that the 
set {xn : n ∈ A} is discrete. This set is infinite, because p is the nontrivial q-limit of (xn)n∈ω. Let (xkn

)n∈ω

be a subsequence of (xn)n∈ω consisting of distinct points and such that {xn : n ∈ A} = {xkn
: n ∈ ω}. Note 

that (xkn
)n∈ω is discrete.

Take any function π : ω → ω such that, for every i ∈ A, π(i) = n if and only if xi = xkn
. The ultrafilter 

r = βπ(q) is a �RK-predecessor of q, and for each neighborhood U of p in βω, we have {n : xkn
∈ U} =

π({n : xn ∈ U}) ∈ r. Therefore, p = r-limn xkn
. By Proposition 1 we have r �RF p.
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The proof of the ‘if’ part of assertion (iv) is similar, the only difference being that we must consider a 
one-to-one sequence (xn)n∈ω; then the restriction of π to A is one-to-one, so that q is equivalent to r (see 
the argument in the proof of Theorem 2). �
4. Products of ultrafilters

Recall that the tensor, or Fubini, product p ⊗ q of ultrafilters p and q on ω is the ultrafilter on ω × ω

defined by

p⊗ q = {A ⊆ ω × ω : {n : {m : (n,m) ∈ A} ∈ q} ∈ p}

(see, e.g., [4]). It is generated by a base consisting of sets of the form
⋃

n∈P

{n} ×Qn, where P ∈ p and Qn ∈ q for each n ∈ P .

A generalization of the Fubini product of two ultrafilters is the Fubini sum
∑

p(qn) of a sequence of 
ultrafilters qn ∈ βω over p ∈ βω, which is generated by sets of the form

⋃

n∈P

{n} ×Qn, where P ∈ p and Qn ∈ qn for each n ∈ P.

Considering products of ultrafilters, we assume that ω×ω is endowed with the discrete topology, so that 
the space β(ω × ω) consists of ultrafilters on ω × ω and its topology is generated by the base of sets of the 
form A = {p ∈ β(ω× ω) : A ∈ p}. Thus, the spaces βω and β(ω× ω) are homeomorphic and have the same 
description, and all notions and constructions related to βω carry over to β(ω × ω) without any changes. 
In what follows, we identify ω with ω × ω and βω with β(ω × ω) when appropriate.

In [11] van Mill defined various topological types of ultrafilters in ω∗, one of which was

A1 = {x ∈ ω∗ : ∃ countable discrete D ⊂ ω∗ \ {x} with x ∈ D}.

Thus, ultrafilters of van Mill’s type A1 are precisely those p ∈ ω∗ which are not discretely weak P -points.

Proposition 6. The tensor product p ⊗ q of any ultrafilters p, q ∈ ω∗ belongs to A1.

Proof. Recall that, for n ∈ ω, p(n) denotes the principal ultrafilter on ω generated by {n}. Let r =
p-limn(p(n) ⊗ q). Any neighborhood of r in β(ω × ω) contains a neighborhood of the form A for A ∈ r. 
Since r = p-limn(p(n) ⊗ q), for each A ∈ r, we have B = {n : A ∈ p(n) ⊗ q} ∈ p. Hence, for every n ∈ ω, 
there exists a Bn ∈ q such that {n} × Bn ⊂ A. Thus, each A ∈ r contains 

⋃
n∈B

{n} × Bn for some Bn ∈ q. 

It follows from the definition of the base of a product of ultrafilters that r = p ⊗ q. Note that the set 
D = {p(n) ⊗ q : n ∈ ω} is countable and discrete (disjoint neighborhoods of its elements are {n} ×Bn) and 
p ⊗ q ∈ D, because any neighborhood of p ⊗ q contains a neighborhood of the form A for A ∈ p ⊗ q, any 
A contains B = {n} × Bn for some n ∈ ω and Bn ∈ q, and B is a neighborhood of p(n) ⊗ q for any such 
B. �
Corollary 2. A tensor product of two nonprincipal ultrafilters is never a discretely weak P -point. Thus, no 
such product is �RF-minimal.

Proposition 7. For any compact space X and any X-discrete (finitely-to-one X-discrete, injectively X-
discrete) ultrafilters p, qn ∈ ω∗, n ∈ ω, the Fubini sum 

∑
p(qn) is an X-discrete (finitely-to-one X-discrete, 

injectively X-discrete) ultrafilter on ω × ω.
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Proof. Take any (any finite-to-one, any one-to-one) sequence (x(n,m)) ⊂ X. We must show that there exists 
an A ∈

∑
p(qn) for which the set {x(n,m) : (n, m) ∈ A} is discrete. For each k ∈ ω, consider the sequence 

(x(k,m))m∈ω. Since qk is discrete, it follows that, for each k ∈ ω, there exists a Bk ∈ qk for which the set 
{x(k,m) : m ∈ Bk} is discrete. Recall that, in a compact space, any sequence has a limit along any ultrafilter. 
Let xk = qk-limm x(k,m) for k ∈ ω. The X-discreteness of p implies the existence of a C ∈ p for which the 
set {xk : k ∈ C} is discrete. Since {xk : k ∈ C} is countable, it is strongly discrete, that is, there exists a 
disjoint system of neighborhoods Uk of the points xk in X (such a system is easy to construct by induction). 
For each neighborhood Uk, we have B̃k = {m : x(k,m) ∈ Uk} ∈ qk, because xk = qk-limm x(k,m). Thus, 
A =

⋃
k∈C

(
{k} × (Bk ∩ B̃k)

)
∈
∑

p(qk). Clearly, the set {x(n,m) : (n, m) ∈ A} is discrete. �
Corollary 3. For any compact space X and any X-discrete (finitely-to-one X-discrete, injectively X-discrete) 
ultrafilters p, q ∈ ω∗, the tensor product p ⊗ q is an X-discrete (finitely-to-one X-discrete, injectively X-
discrete) ultrafilter on ω × ω.

Below we consider the set N of positive integers instead of ω solely in order that multiplication be a 
finite-to-one map. On the space βN the semigroup operations · and + are defined (see [4]). Given two 
ultrafilters p and q on N, their semigroup product p · q and sum p + q are generated, respectively, by the 
sets

⋃

n∈P

(n ·Qn) and
⋃

n∈P

(n + Qn), where P ∈ p and Qn ∈ q for each n ∈ P

(here · and + denote the usual multiplication and addition in N). The maps

· : N ×N → N, (m,n) 
→ m · n, and +: N ×N → N, (m,n) 
→ m + n,

are finite-to-one. Clearly, ·(p ⊗ q) = p · q and +(p ⊗ q) = p + q for any p, q ∈ βN. We obtain the following 
corollary.

Corollary 4. For any compact space X and any X-discrete (finitely-to-one X-discrete) ultrafilters p, q ∈ N∗, 
the ultrafilters p · q and p + q are X-discrete (finitely-to-one X-discrete).

Corollary 5. The sets of discrete, finitely-to-one discrete, ω∗-discrete, and finitely-to-one ω∗-discrete ultra-
filters on N are subsemigroups in the semigroups (βN, ·) and (βN, +).

Corollary 6. If there exist discrete ultrafilters, then there exist discrete ultrafilters which are not discretely 
weak P -points (and hence are not �RF-minimal).

5. Classes of spaces between F -spaces and βω-spaces

In what follows, we consider extremally disconnected, F -, and βω-spaces. A space X is extremally discon-
nected if any disjoint open sets in X have disjoint closures (or, equivalently, if the closure of any open set is 
open), and X is called an F -space if any disjoint cozero sets in X are completely (= functionally) separated. 
Clearly, any extremally disconnected space is an F -space. The basic topological properties of extremally 
disconnected spaces and F -spaces can be found in the fundamental book [19] by Gillman and Jerison. The 
class of βω-spaces was introduced by van Douwen [20] as a generalization of the class of F -spaces. A space 
X is called a βω-space if, whenever D is a countable discrete subset of X with compact closure D in X, its 
closure D is the Stone–Čech compactification βD (or, equivalently, D is homeomorphic to βω).

It is known that any countable separated sets in an extremally disconnected space are functionally 
separated [21, 1.6]. It follows that any countable subspace of an extremally disconnected space is extremally 
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disconnected. Moreover, any countable subspace of an F -space is extremally disconnected as well. Indeed, 
according to [19, 9H.1], any countable set in an F -space is C∗-embedded, and it is easy to see that the 
property of being an F -space is inherited by C∗-embedded subspaces. Thus, any countable subspace of an 
F -space is an F -space. It remains to note that all countable spaces are perfectly normal, so that any open 
set in such a space is a cozero set.

Note also that all countable subspaces of a space X are extremally disconnected if and only if any 
countable separated subsets of X have disjoint closures. Indeed, suppose that all countable subspaces of X
are extremally disconnected and let A and B be countable separated subsets of X. Then A ∪B is extremally 
disconnected, and A and B are separated in A ∪B. According to [21, Proposition 1.9], we have A∩B = ∅. 
Conversely, suppose that countable separated subsets of X have disjoint closures and let Y be a countable 
subspace of X. Obviously, any disjoint open subsets of Y are separated in Y and hence in X. Therefore, 
they have disjoint closures in X and hence in Y .

These observations suggest a number of natural generalizations of the class of F -spaces.

Definition 3. We say that a topological space X is

• an R1-space if any countable subset of X is extremally disconnected, i.e., any two separated countable 
subsets of X have disjoint closures;

• an R2-space if any two separated countable subsets of X one of which is discrete have disjoint closures;
• an R3-space if any two separated countable discrete subsets of X have disjoint closures.

Importantly, the classes of Ri-spaces are hereditary, unlike those of extremally disconnected and F -spaces.
It is clear that

F -spaces ⊂ R1-spaces ⊂ R2-spaces ⊂ R3-spaces.

However, the reverse inclusions do not hold. Examples distinguishing between these classes are the quotient 
spaces (ω∗ ⊕ ω∗)/{p, q}, where p belongs to the first copy of ω∗ and q, to the second one. An example of 
an R1-space which is not an F -space is obtained when both p and q are weak P -points not being P -points. 
An example of an R2-space which is not an R1-space is obtained when both p and q are discretely weak 
P -points not being weak P -points. Finally, an example of an R3-space which is not an R2-space is obtained 
when p is a discretely weak P -point not being a weak P -point and q is not a discretely weak P -point. For 
details, see [3].

Proposition 8. (i) A space X is an R3-space if and only if any countable discrete set D ⊂ X is C∗-embedded 
in D.

(ii) A space X is an R3-space if and only if the closure of any countable discrete set D ⊂ X in βX is 
the Stone–Čech compactification βD of D.

(iii) A space X is a βω-space if and only if any countable discrete set D ⊂ X with compact closure is 
C∗-embedded in D.

Proof. (i) First, note that countable discrete sets A, B ⊂ X are separated if and only if D = A ∪B is discrete. 
Therefore, X is an R3-space if and only if any disjoint subsets of any discrete set D ⊂ X have disjoint 
closures. By Taimanov’s theorem (see [22, Theorem 3.2.1]) this means precisely that D is C∗-embedded in 
the closure of D in βX.

Assertions (ii) and (iii) immediately follow from (i) and the definitions of Stone–Čech compactification 
and of a βω-space. �
Corollary 7. Any R3-space is a βω-space. Any compact βω-space is an R3-space.
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The class of βω-spaces is strictly larger than that of R3-spaces: any space containing no infinite compact 
subspaces is a βω-space but not necessarily a R3-space. From some point of view, the property of being an 
R3-space is more natural than that of being a βω-space.

A property which is in a sense opposite to R3 was introduced by Kunen in [2]. He called a space X
sequentially small if any infinite set in X has an infinite subset whose closure does not contain a copy of 
βω. Thus, a compact space X is sequentially small if none of its countable discrete subsets is C∗-embedded.

6. Homogeneity in product spaces

In [3] we extended Kunen’s lemma cited at the beginning of this paper as follows.

Proposition 9 ([3]). Let X be any compact R2-space. Suppose that x ∈ X, (dm)m∈ω is a discrete sequence 
of distinct points in X, (en)n∈ω is any sequence of points in X, and x = p-limm dm = q-limn en, where p is 
a weak P -point in ω∗ and q is any point in ω∗. If {n : en = x} /∈ q, then p �RK q.

Imposing additional constraints on ultrafilters, we can further extend the class of spaces to which Kunen’s 
lemma applies.

Proposition 10. Let X be any compact βω-space. Suppose that x ∈ X, (dm)m∈ω is a discrete sequence 
of distinct points in X, (en)n∈ω is any sequence of points in X, and x = p-limm dm = q-limn en, where 
p, q ∈ ω∗, p is a discretely weak P -point in ω∗, and q is discrete. If {n : en = x} /∈ q, then p �RK q.

Proof. Since q is discrete and {n : en = x} /∈ q, it follows that there exists a Q ∈ q for which the set 
E = {en : n ∈ Q} is discrete (and x ∈ E \ E). By assumption D = {dm : m ∈ ω} is discrete as well, and 
x ∈ D\D. Since X is a compact βω-space, the point x has a neighborhood U such that either U∩(D\E) = ∅

or U ∩ (E \D) = ∅ (otherwise x would belong to the intersection of the closures of the separated countable 
discrete sets E \ D and D \ E). By the definition of q-limit, the set {n ∈ ω : en ∈ U} belongs to q. We 
assume without loss of generality that Q is contained in this set.

Since x ∈ D ∩ E and x /∈ D \ E or x /∈ E \D, we have either x ∈ D ∩ E or x ∈ E ∩D.
Suppose that x ∈ E ∩D ⊂ D. Clearly, we then have U ∩ (E \D) = ∅. Recall that D = βD (because X is 

a compact βω-space) and consider the map f : dm 
→ m. We have βf(x) = p-limm βf(dm) = p-limm m = p

(see Remark 1). On the other hand, setting e′n = en for n ∈ Q and e′n = x for n ∈ ω \ Q, we obtain a 
sequence (e′n)n∈ω for which x = q-limn e

′
n, because the sequence (e′n) coincides with (en) on an element of 

q. Therefore, p = βf(x) = q-limn βf(e′n) by Remark 1 (ii), and Proposition 5 (iii) implies r �RK q for some 
r �RF p. Since p is a discretely weak P -point, we have p = r by Theorem 2 (iii).

Now suppose that x ∈ D ∩ E ⊂ E; in this case, U ∩ (D \ E) = ∅, so that {m ∈ ω : dm ∈ E} ∈ p. Let us 
somehow number the points of E as {e′n : n ∈ ω}, so that (e′n)n∈ω is a discrete sequence of distinct points 
with range E, and define ϕ : ω → ω by setting ϕ(n) equal to, say, 0 for n ∈ ω \ Q and to the number k
such that en = e′k for n ∈ Q. It is easy to check that x = βϕ(q)-limn e

′
n (see Remark 1 (iii)). Consider the 

one-to-one map g : E → ω defined by g(e′n) = n. We have E = βE and βg(x) = βϕ(q)-limn βg(e′n) = βϕ(q).
Suppose that {m : dm /∈ E} ∈ p. Then there are P, P ′ ∈ p, P ⊂ P ′, for which {dm : m ∈ P ′} ⊂

E∗ = βE \ E and P ′ \ P is infinite. Choose a bijection Ψ: P ′ \ P → ω \ P . Setting d′m = dm for m ∈ P

and d′m = dΨ−1(m) for m ∈ ω \ P , we obtain a new discrete sequence (d′m)m∈ω of distinct points with 
range D′ ⊂ D ∩ E∗ which coincides with (dm)m∈ω on P ∈ p. Clearly, we still have x = p-limm d′m and 
βg(x) = p-limm βg(d′m); moreover, βg(d′m) ∈ ω∗ for all m. But this is impossible by Corollary 1.

Thus, there exists a P ′ ∈ p for which {dm : m ∈ P ′} ⊂ E. For the sequence (d′m)m∈ω constructed in 
precisely the same way as above (by taking P ∈ p, P ⊂ P ′, such that P ′ \ P is infinite and redefining (dm)
on ω \ P ), we have D′ = {d′m : m ∈ ω} ⊂ E and hence (βg) � D′ = g � D′. Note also that d′m = dm for 
m ∈ P .
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Since the element P of p has infinite complement in ω, there is a bijection ψ : ω → ω such that 
ψ(g(d′m)) = m for m ∈ P . Then the sequence (m)m∈ω, which coincides with (ψ(g(d′m)))m∈ω and hence 
with (ψ(g(dm)))m∈ω when restricted to P , converges to βψ(βg(x)) along p. Therefore, βψ(βg(x)) = p. 
Since ψ is one-to-one, it follows that p is equivalent to βg(x), and since βg(x) = βϕ(q), it follows that 
p �RK q. �
Remark 6. For any ultrafilter q ∈ ω∗, there exists a weak P -point p ∈ ω∗ such that p ��RK q.

Indeed, by Remark 3 q has at most 2ω �RK-predecessors, while the number of weak P -points in ω∗ is 
2ωω [8].

Corollary 8. If there exists a discrete ultrafilter in ω∗, then there exist no infinite homogeneous compact 
βω-spaces.

Proof. Let q be a discrete ultrafilter in ω∗, and let p ∈ ω∗ be a weak P -point such that p ��RK q. Suppose 
that X is an infinite homogeneous compact βω-space and (en)n∈ω is any discrete sequence of distinct points 
in X. Let x = p-limn en, and let y = q-limn en. Since X is homogeneous, there exists a homeomorphism 
h : X → X taking y to x. By Remark 1, x = q-limn h(en), and by Proposition 10 we have p �RK q, which 
contradicts the assumption. �

Kunen used his lemma to prove a theorem on the nonhomogeneity of product spaces [2, Theorem 1]. 
Using Propositions 9 and 10 and Remark 6 instead of the lemma in Kunen’s argument, we obtain the 
following results.

Theorem 4. Let X =
∏

α<κ Xα, where κ is any cardinal and each Xα satisfies at least one of the following 
conditions: (i) is an infinite compact R2-space; (ii) contains a weak P -point; (iii) has a nonempty sequentially 
small open subset. Suppose also that at least one Xα is an infinite compact R2-space. Then X is not 
homogeneous.

Corollary 9. No product of compact R2-spaces is homogeneous.

Theorem 5. Suppose that there exists a discrete ultrafilter in ω∗. Let X =
∏

α<κ Xα, where κ is any cardinal 
and each Xα satisfies at least one of the following conditions: (i) is an infinite compact βω-space; (ii) contains 
a weak P -point; (iii) has a nonempty sequentially small open subset. Suppose also that at least one Xα is 
an infinite compact βω-space. Then X is not homogeneous.

Corollary 10. If there exists a discrete ultrafilter in ω∗, then no product of compact βω-spaces is homogeneous.

The following corollary uses the assumption d = c. Recall that the notation d is used for the dominating 
number, that is, the smallest cardinality of a family D of functions ω → ω with the property that, for every 
function f : ω → ω, there is a g ∈ D such that g(n) � f(n) for all but finitely many n ∈ ω, and c is the 
standard notation for 2ω. Obviously, CH implies ω1 = d = c, although ω1 < d = c is consistent with ZFC as 
well (see, e.g., [23]).

Corollary 11. Under the assumption d = c, no product of compact βω-spaces is homogeneous.

Proof. Ketonen proved that d = c implies the existence of P -points in ω∗ [24]. By Remark 4 any P -point is 
a discrete ultrafilter. �

In conclusion, we mention recent results of Reznichenko concerning homogeneous compact subspaces of 
product spaces. He proved that, under CH, (i) any compact set in a homogeneous subspace of a countable 
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product of βω-spaces is metrizable, (ii) any compact set in a homogeneous subspace of a finite product of 
βω-spaces is finite [25, Theorems 3 and 4]. An analysis of his proof shows that CH can be replaced by the 
assumption that there exist uncountably many �RB-incompatible (that is, not nearly coherent) P -points. 
To be more precise, the following theorems hold.

Theorem 6. Suppose that there exist uncountably many �RB-incompatible P -points and X =
∏

n∈ω Xn, 
where each Xn is a compact βω-space. Let Y ⊂ X be a homogeneous space. Then each compact subspace of 
Y is metrizable.

Theorem 7. Let n be a positive integer. Suppose that there exist n + 1 �RB-incompatible P -points and 
X =

∏n
i=1 Xi, where each Xi is a compact βω-space. Let Y ⊂ X be a homogeneous space. Then each 

compact subspace of Y is finite.

This gives rise to the question of investigating conditions for the existence of uncountably many not nearly 
coherent P -points. A plausible conjecture is that such a condition is d = u = c (here u is the minimum 
cardinality of a free ultrafilter base on ω), because under this condition there exist, first, 22ω Rudin–Keisler 
incomparable P -points [26] and, secondly, 22ω near-coherence classes of ultrafilters [18].
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