Теория игр в топологии

Е.А.Резниченко

Москва

Содержание

🚺 Использование игр в топологии

2 Сети и базы

Лекция 2. Применение топологических игр. Сети и базы.

Рассмотрим общую схему, как игры используются в топологии. То есть как используя игры доказывать теоремы в топологии.

Применение топологических игр. Сети и базы.

Сравнительно несложно доказываются утверждения вида:

(1) $(P) \Longrightarrow$ игра δ -благоприятна Если в пространстве X выполняется некоторое свойство (P), то X благоприятно для некоторого игрока $\delta \in P$ в некоторой топологической игре G.

Используем свойство (P) и строим выигрышную стратегию для игрока δ . Двойственное утверждение:

(2) игра δ -неблагоприятна \Longrightarrow (Q) Если X не благоприятна для δ в игре G, то для Xвыполняется свойство (Q)= \neg (P).

Труднее доказывать утверждения вида

- (3) $(P) \Longrightarrow$ игра δ -неблагоприятна Если в пространстве X выполняется свойство (P), то X не благоприятно для игрока $\delta \in P$ в игре G.
- (4) игра δ -благоприятна \Longrightarrow (Q) Если X благоприятна для δ в игре G, то для X выполняется свойство (Q)= \neg (P).

Стандартная схема использования игр:

$$(A) \Longrightarrow$$
 что то про игры \Longrightarrow (B)

Либо первая либо вторая импликация будет вида (3) или (4). То есть реализуеться одна из схем:

(I)
$$(A) \Longrightarrow$$
игра δ -благоприятна $\Longrightarrow (B)$

(II) (A)
$$\Longrightarrow$$
 игра δ -неблагоприятна \Longrightarrow (B)

Тут сложные импликации вида (3) и (4). Эти импликации двойственны.

Общая схема доказательства

являеться тучным пространством.

```
(4) игра \delta-благоприятна \Longrightarrow (Q) Играют игроки \delta и \kappa. "Простой" способ доказательства (4) состоит в доказательтве игра \delta-благоприятна \Longrightarrow игра \kappa-неблагоприятна \Longrightarrow (Q) Но такое доказательство не существенно облегчают доказательства (A) \Longrightarrow (B), так как сводит схему (I) к схеме (II). Схема (A) \Longrightarrow игра \delta-благоприятна \Longrightarrow игра \kappa-неблагоприятна \Longrightarrow (B)
```

также испольлзуеться, например, при доказательстве того что ${\mathbb I}$

Более сложен но и более полезен способ:

- f 0 Берем выигрышную стратегию s для игрока δ .
- $oldsymbol{Q}$ Строим специальным способом семейство стратегий $\{q_{lpha}: lpha \in A\}$ для игрока $\kappa.$
- ullet Получаем семейство партий $\{p_{lpha}: lpha \in A\}$, выигрышных для игрока δ , $p_{lpha}=p(s,q_{lpha}).$
- **4** Семейство партий $\{p_{\alpha} : \alpha \in A\}$ используем для доказательства свойства (Q).

Используем эту схему в характеризации пространств, в которых игрок β выигрывет в игре Банаха Мазура.

Сети и базы

Пусть X пространство и $\mathcal V$ семейство непустых подмножеств X . Семейство $\mathcal V$ называеться

- ullet сетью X, если для любого $x\in X$ и окрестности $U\ni x$ существут $V\in \mathcal{V},\ x\in V\subset U;$
- ② π -*сетью* X, если для любого открытого непустого $U\subset X$ существут $V\in\mathcal{V},\ V\subset U$;
- ullet базой X, если ${\mathcal V}$ состоит из открытых множеств и является сетью X;
- ullet π -базой X, если $\mathcal V$ состоит из открытых множеств и является π -сетью X.

Семейство множеств $\mathcal P$ называеться дизьюнктным семейством, если $A\cap B=\varnothing$ для различных $A,B\in\mathcal P$.

Theorem 2.1.

Пусть X пространство и $\mathcal V$ есть π -сеть. Тогда существует $\mathcal P\subset \mathcal V$, так что

- $oldsymbol{2}$ семейство $oldsymbol{\mathcal{P}}$ являеться дизьюнктным семейством.

Доказательство для счетного ${\mathcal V}$

Докажем теорему сначало для случая, когда множество $\mathcal V$ счетно, $\mathcal V=\{M_n:n<\omega\}$. Построим $\mathcal P=\{M_{n_k}:k<\omega\}\subset \mathcal V$ с помощью индукции.

База индукции, k = 0. $n_0 = 0$.

f Шаг индукции, k>0. Пусть

 $M=M_{n_0}\cup M_{n_0}\cup M_{n_1}\cup...\cup M_{n_{k-1}}.$ Если $\overline{M}=X$, то положим $\mathfrak{P}=\{M_{n_0},M_{n_0},M_{n_1},...,M_{n_{k-1}}\}$ и теорема доказана.

Положим $U=X\setminus M\neq\varnothing$, $N_k=\{i<\omega:M_i\subset U\}$. Так как $\mathcal V$ есть сеть, то $N_k\neq\varnothing$. Положим $n_k=\min N_k=\min \{i:i\in N_k\}$. Последовательность n_k возрастающая.

Покажем, что $M=\bigcup \mathcal{P}=\bigcup_{k<\omega} M_{n_k}$ плотно в X, то есть $\overline{M}=X$. Предположим противное. Тогда $U=X\setminus \overline{M}$ открыто и не пусто. Так как \mathcal{V} есть π -сеть, то $M_I\subset U$ для некоторого $I<\omega$. Существует k, для которого $I< n_k$. Противоречие, так как $I\in N_k$ и $I< n_k=\min N_k$.

Лемма Цорна

Существует несколько альтернативных формулировок леммы Цорна.

Основная: если в частично упорядоченном множестве M для всякого линейного упорядоченного подмножества существует верхняя грань, то в M существует максимальный элемент. В приложениях наиболее удобна формулировка, утверждающая существование максимального элемента, который не меньше заданного: если всякая цепь в частично упорядоченном множестве M имеет верхнюю грань, то всякий элемент из M предшествует некоторому максимальному.

В оригинальной статье 1935 года Цорн сформулировал утверждение для множеств, частично упорядоченных по отношению включения: если семейство множеств $\mathfrak M$ обладает тем свойством, что объединение любой цепи множеств из $\mathfrak M$ есть снова множество из этого семейства, то $\mathfrak M$ содержит максимальное множество.

Семейство $\mathcal{M}\subset \mathfrak{M}$ называеться *цепью*, если для любых $A,B\in \mathcal{M}$ либо $A\subset B$ либо $B\subset A$.

Положим

 $\mathfrak{M} = \{ \mathfrak{N} \subset \mathcal{V} : \mathfrak{M} \text{ есть дизьюнектное семейство} \}.$

Объедениение цепи в $\mathfrak M$ снова будет дизьюнктным семейством, то есть будет принадлежать $\mathfrak M$. Применим лемму Цорна и возмем $\mathcal P\in \mathfrak M$ максимальный элемент. Покажем, что $M=\bigcup \mathcal P$ плотно в X. Предположим противное. Пусть $U=X\setminus \overline M\neq=\varnothing$. Так как $\mathcal V$ есть π -сеть, то существует $P\in \mathcal V$, так что $P\subset U$. Тогда $\mathcal P'=\mathcal P\cup \{P\}\in \mathfrak M$ и $\mathcal P'$ строго больше $\mathcal P$. Противоречие с максимальностью $\mathcal P$.