|
Имя: Иванов Александр Владимирович Название: On metric order in spaces of the form ${\cal F}(X)$
Город, страна: Петрозаводск, Россия
Организация: Петрозаводский государственный университет
Абстракт: For a normal functor ${\cal F}$ and a point $\xi\in{\cal F}(Y)$
($Y$ is a compact metric space)
we define lower and upper metric orders $\underline{o}(\xi)$
and $\overline{o}(\xi)$ as a speed of approximation of $\xi$ by points
$\xi_n\in{\cal F}_n(Y)$. If ${\cal F}$
is the exponential functor $\exp$ then
$\underline{o}(\xi)$
and $\overline{o}(\xi)$ coinside, respectively, with
classical
lower and upper capacitarian
dimensions $\underline{\dim}_B\xi$ and $\overline{\dim}_B\xi$
of a closed subset $\xi\subset Y$. We establish some properties of
$\underline{o}(\xi)$
and $\overline{o}(\xi)$ and pose several questions, concerning,
in particular, metric orders in superextension $\lambda(Y)$.
|
|